Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Cells Tissues Organs ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38824915

RESUMEN

Background Acupuncture has been used for pain management for thousands of years. However, it is largely unclear whether this therapeutic approach can effectively reduce heart failure-associated symptoms, including dyspnea. Summary The hypothesis posited in this study was that acupuncture does indeed aid in management of such symptoms and was motivated by the following statistics that establish a requisite need for efficient management of dyspnea to improve patient outcomes with heart failure: In 2020, an estimated 6.2 million adults in the USA had a heart failure diagnosis; in 2018, 379,800 death certificates reported heart failure; and the national cost of heart failure in 2012 was approximately $30.7 billion. The methodology employed to conduct this study involved review of trial data extracted from review of papers pertaining to acupuncture, symptoms of heart failure and dyspnea, from academic and clinical data repositories subject to various inclusion and exclusion criteria. Of the initial set of 293 studies identified, the resulting inclusion set comprised 30 studies. The analysis conducted revealed that the highest frequency of combined acupuncture points prescribed for the foregoing search criteria were as follow: BL13, BL23, LU9, LU5, Dingchuan, LI4, PC6 and HT7. A meta-analysis of combined pooled p-values for the studies revealed that acupuncture does aid in the management of symptoms of dyspnea and heart failure, subject to various limitations including but not limited to heterogeneity inherent between the studies in the inclusion set that was analyzed. Such limitations underscore the need to restrict generalizations from the conclusions of this study. Key messages The impact and novelty of this research study is its attempt to target the apparent paucity of literature that focuses on the management of dyspnea specifically in the context of heart failure with acupuncture, and to bridge the gap of the application of acupuncture research on dyspnea to the cardiovascular context of heart failure. Further statistical analysis and a pilot study are warranted to consolidate or nullify the results of the research undertaken under this review study.

2.
Chronobiol Int ; 40(1): 33-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35758140

RESUMEN

Atherosclerosis, a chronic inflammatory disease of the arteries that appears to have been as prevalent in ancient as in modern civilizations, is predisposing to life-threatening and life-ending cardiac and vascular complications, such as myocardial and cerebral infarctions. The pathogenesis of atherosclerosis involves intima plaque buildup caused by vascular endothelial dysfunction, cholesterol deposition, smooth muscle proliferation, inflammatory cell infiltration and connective tissue accumulation. Hypertension is an independent and controllable risk factor for atherosclerotic cardiovascular disease (CVD). Conversely, atherosclerosis hardens the arterial wall and raises arterial blood pressure. Many CVD patients experience both atherosclerosis and hypertension and are prescribed medications to concurrently mitigate the two disease conditions. A substantial number of publications document that many pathophysiological changes caused by atherosclerosis and hypertension occur in a manner dependent upon circadian clocks or clock gene products. This article reviews progress in the research of circadian regulation of vascular cell function, inflammation, hemostasis and atherothrombosis. In particular, it delineates the relationship of circadian organization with signal transduction and activation of the renin-angiotensin-aldosterone system as well as disturbance of the sleep/wake circadian rhythm, as exemplified by shift work, metabolic syndromes and obstructive sleep apnea (OSA), as promoters and mechanisms of atherogenesis and risk for non-fatal and fatal CVD outcomes. This article additionally updates advances in the clinical management of key biological processes of atherosclerosis to optimally achieve suppression of atherogenesis through chronotherapeutic control of atherogenic/hypertensive pathological sequelae.


Asunto(s)
Aterosclerosis , Ritmo Circadiano , Humanos , Animales , Aterosclerosis/complicaciones , Aterosclerosis/patología , Aterosclerosis/prevención & control , Genómica , Túnica Íntima/patología , Sistema Renina-Angiotensina , Hipertensión/patología , Factores de Riesgo de Enfermedad Cardiaca
3.
Compr Physiol ; 12(4): 4165-4184, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35950658

RESUMEN

We reviewed medication package inserts, US Food and Drug Administration (FDA) reports, and journal publications concerning the 10 nonbiosimilar patient-applied (PA) testosterone (T) replacement therapies (TRTs) for intraday serum T patterning and blood pressure (BP) effects. Blood T concentration is circadian rhythmic in young adult eugonadal males, being highest around awakening and lowest before bedtime. T level and 24 h variation are blunted in primary and secondary hypogonadism. Utilized as recommended, most PA-TRTs achieve nonphysiologic T 24 h patterning. Only Androderm® , an evening PA transdermal patch, closely replicates the normal T circadian rhythmicity. Accurate determination of risk for BP elevation and hypertension (HTN) by PA-TRTs is difficult due to limitations of office BP measurements (OBPM) and suboptimal methods and endpoints of ambulatory BP monitoring (ABPM). OBPM is subject to "White Coat" pressor effect resulting in unrepresentative BP values plus masked normotension and masked HTN, causing misclassification of approximately 45% of trial participants, both before and during treatment. Change in guideline-recommended diagnostic thresholds over time causes misclassification of an additional approximately 15% of participants. ABPM is improperly incorporated into TRT safety trials. It is done for 24 h rather than preferred 48 h; BP is oversampled during wakefulness, biasing derived 24 h mean values; 24 h mean systolic and diastolic BP (SBP, DBP) are inappropriate primary outcomes, because of not being best predictors of risk for major acute cardiovascular events (MACE); "daytime" and "nighttime" BP means referenced to clock time are reported rather than biologically relevant wake-time and sleep-time BP means; most importantly, asleep SBP mean and dipping, strongest predictors of MACE, are disregarded. © 2022 American Physiological Society. Compr Physiol 12: 1-20, 2022.


Asunto(s)
Antihipertensivos , Hipertensión , Antihipertensivos/uso terapéutico , Presión Sanguínea/fisiología , Monitoreo Ambulatorio de la Presión Arterial/métodos , Ritmo Circadiano , Humanos , Hipertensión/tratamiento farmacológico , Masculino , Factores de Riesgo , Testosterona/uso terapéutico
4.
Vascul Pharmacol ; 146: 107091, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35896140

RESUMEN

Vascular smooth muscle cells (SMC) possess a unique cytoplasticity, regulated by transcriptional, translational and phenotypic transformation in response to a diverse range of extrinsic and intrinsic pathogenic factors. The mature, differentiated SMC phenotype is physiologically typified transcriptionally by expression of genes encoding "contractile" proteins, such as SMα-actin (ACTA2), SM-MHC (myosin-11) and SM22α (transgelin). When exposed to various pathological conditions (e.g., pro-atherogenic risk factors, hypertension), SMC undergo phenotypic modulation, a bioprocess enabling SMC to de-differentiate in immature stages or trans-differentiate into other cell phenotypes. As recent studies suggest, the process of SMC phenotypic transformation involves five distinct states characterized by different patterns of cell growth, differentiation, migration, matrix protein expression and declined contractility. These changes are mediated via the action of several transcriptional regulators, including myocardin and serum response factor. Conversely, other factors, including Kruppel-like factor 4 and nuclear factor-κB, can inhibit SMC differentiation and growth arrest, while factors such as yin yang-1, can promote SMC differentiation whilst inhibiting proliferation. This article reviews recent advances in our understanding of regulatory mechanisms governing SMC phenotypic modulation. We propose the concept that transcription factors mediating this switching are important biomarkers and potential pharmacological targets for therapeutic intervention in cardiovascular disease.


Asunto(s)
Músculo Liso Vascular , Factor de Respuesta Sérica , Actinas/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , Fenotipo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-34909660

RESUMEN

This article summarizes the current literature and documents new evidence concerning drug-drug interactions (DDI) stemming from pharmacogenomic and circadian rhythm determinants of therapies used to treat common cardiovascular diseases (CVD), such as atherosclerosis and hypertension. Patients with CVD often have more than one pathophysiologic condition, namely metabolic syndromes, hypertension, hyperlipidemia, and hyperglycemia, among others, which necessitate polytherapeutic or polypharmaceutic management. Interactions between drugs, drugs and food/food supplements, or drugs and genetic/epigenetic factors may have adverse impacts on the cardiovascular and other systems of the body. The mechanisms underlying cardiovascular DDI may involve the formation of a complex pharmacointeractome, including the absorption, distribution, metabolism, and elimination of drugs, which affect their respective bioavailability, efficacy, and/or harmful metabolites. The pharmacointeractome of cardiovascular drugs is likely operated with endogenous rhythms controlled by circadian clock genes. Basic and clinical investigations have improved the knowledge and understanding of cardiovascular pharmacogenomics and pharmacointeractomes, and additionally they have presented new evidence that the staging of deterministic circadian rhythms, according to the dosing time of drugs, e.g., upon awakening vs. at bedtime, cannot only differentially impact their pharmacokinetics and pharmacodynamics but also mediate agonistic/synergetic or antagonistic DDI. To properly manage CVD patients and avoid DDI, it is important that clinicians have sufficient knowledge of their multiple risk factors, i.e., age, gender, and life style elements (like diet, smoking, psychological stress, and alcohol consumption), and comorbidities, such as diabetes, hypertension, dyslipidemia, and depression, and the potential interactions between genetic or epigenetic background of their prescribed therapeutics.

7.
J Cell Mol Med ; 25(12): 5381-5390, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33949765

RESUMEN

Cardiac stromal cells (CSCs) contain a pool of cells with supportive and paracrine functions. Various types of mesenchymal stromal cells (MSCs) can influence CSCs in the cardiac niche through their paracrine activity. Ischaemia/reperfusion (I/R) leads to cell death and reduction of the paracrine activity of CSCs. The forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD), known to potentiate anti-apoptotic, pro-survival and pro-angiogenic activities of MSCs isolated from the adipose tissue (AT-MSCs), may increase CSC survival, favouring their paracrine activities. We aimed at investigating the hypothesis that CSCs feature improved resistance to simulated I/R (SI/R) and increased commitment towards the cardiovascular lineage when preconditioned with conditioned media (CM) or extracellular vesicles (EV) released from AT-MSCs overexpressing TERT and MYOCD (T/M AT-MSCs). Murine CSCs were isolated with the cardiosphere (CSps) isolation technique. T/M AT-MSCs and their secretome improved spontaneous intracellular calcium changes and ryanodine receptor expression in aged CSps. The cytoprotective effect of AT-MSCs was tested in CSCs subjected to SI/R. SI/R induced cell death as compared to normoxia (28 ± 4 vs 10 ± 3%, P = .02). Pre-treatment with CM (15 ± 2, P = .02) or with the EV-enriched fraction (10 ± 1%, P = .02) obtained from mock-transduced AT-MSCs in normoxia reduced cell death after SI/R. The effect was more pronounced with CM (7 ± 1%, P = .01) or the EV-enriched fraction (2 ± 1%, P = .01) obtained from T/M AT-MSCs subjected to SI/R. In parallel, we observed lower expression of the apoptosis marker cleaved caspase-3 and higher expression of cardiac and vascular markers eNOS, sarcomeric α-actinin and cardiac actin. The T/M AT-MSCs secretome exerts a cytoprotective effect and promotes development of CSCs undergoing SI/R towards a cardiovascular phenotype.


Asunto(s)
Biomarcadores/metabolismo , Enfermedades Cardiovasculares/terapia , Corazón/crecimiento & desarrollo , Células Madre Mesenquimatosas/citología , Proteínas Nucleares/metabolismo , Daño por Reperfusión/complicaciones , Telomerasa/metabolismo , Transactivadores/metabolismo , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Telomerasa/genética , Transactivadores/genética
8.
Epidemiol Infect ; 149: e4, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33397519

RESUMEN

Hypertension represents one of the most common pre-existing conditions and comorbidities in Coronavirus disease 2019 (COVID-19) patients. To explore whether hypertension serves as a risk factor for disease severity, a multi-centre, retrospective study was conducted in COVID-19 patients. A total of 498 consecutively hospitalised patients with lab-confirmed COVID-19 in China were enrolled in this cohort. Using logistic regression, we assessed the association between hypertension and the likelihood of severe illness with adjustment for confounders. We observed that more than 16% of the enrolled patients exhibited pre-existing hypertension on admission. More severe COVID-19 cases occurred in individuals with hypertension than those without hypertension (21% vs. 10%, P = 0.007). Hypertension associated with the increased risk of severe illness, which was not modified by other demographic factors, such as age, sex, hospital geological location and blood pressure levels on admission. More attention and treatment should be offered to patients with underlying hypertension, who usually are older, have more comorbidities and more susceptible to cardiac complications.


Asunto(s)
COVID-19/complicaciones , Hipertensión/complicaciones , Adulto , Anciano , COVID-19/diagnóstico , China , Comorbilidad , Femenino , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Factores de Riesgo
9.
Chronobiol Int ; 38(1): 1-26, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33342316

RESUMEN

Current hypertension guidelines fail to provide a recommendation on when-to-treat, thus disregarding relevant circadian rhythms that regulate blood pressure (BP) level and 24 h patterning and medication pharmacokinetics and pharmacodynamics. The ideal purpose of ingestion-time (chronopharmacology, i.e. biological rhythm-dependent effects on the kinetics and dynamics of medications, and chronotherapy, i.e. the timing of pharmaceutical and other treatments to optimize efficacy and safety) trials should be to explore the potential impact of endogenous circadian rhythms on the effects of medications. Such investigations and outcome trials mandate adherence to the basic standards of human chronobiology research. In-depth review of the more than 150 human hypertension pharmacology and therapeutic trials published since 1974 that address the differential impact of upon-waking/morning versus at-bedtime/evening schedule of treatment reveals diverse protocols of sometimes suboptimal or defective design and conduct. Many have been "time-of-day," i.e. morning versus evening, rather than circadian-time-based, and some relied on wake-time office BP rather than around-the-clock ambulatory BP measurements (ABPM). Additionally, most past studies have been of too small sample size and thus statistically underpowered. As of yet, there has been no consensual agreement on the proper design, methods and conduct of such trials. This Position Statement recommends ingestion-time hypertension trials to follow minimum guidelines: (i) Recruitment of participants should be restricted to hypertensive individuals diagnosed according to ABPM diagnostic thresholds and of a comparable activity/sleep routine. (ii) Tested treatment-times should be selected according to internal biological time, expressed by the awakening and bed times of the sleep/wake cycle. (iii) ABPM should be the primary or sole method of BP assessment. (iv) The minimum-required features for analysis of the ABPM-determined 24 h BP pattern ought to be the asleep (not "nighttime") BP mean and sleep-time relative BP decline, calculated in reference to the activity/rest cycle per individual. (v) ABPM-obtained BP means should be derived by the so-called adjusted calculation procedure, not by inaccurate arithmetic averages. (vi) ABPM should be performed with validated and calibrated devices at least hourly throughout two or more consecutive 24 h periods (48 h in total) to achieve the highest reproducibility of mean wake-time, sleep-time and 48 h BP values plus the reliable classification of dipping status. (vii) Calculation of minimum required sample size in adherence with proper statistical methods must be provided. (viii) Hypertension chronopharmacology and chronotherapy trials should preferably be randomized double-blind, randomized open-label with blinded-endpoint, or crossover in design, the latter with sufficient washout period between tested treatment-time regimens.


Asunto(s)
Monitoreo Ambulatorio de la Presión Arterial , Hipertensión , Antihipertensivos/uso terapéutico , Presión Sanguínea , Cronoterapia , Ritmo Circadiano , Ingestión de Alimentos , Humanos , Hipertensión/tratamiento farmacológico , Reproducibilidad de los Resultados , Factores de Riesgo , Factores de Tiempo
10.
Curr Opin Pharmacol ; 57: 41-48, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33279870

RESUMEN

Circadian rhythms impact cardiac and vascular pathophysiology, resulting in 24-hour patterning of symptoms and life-threatening/ending events (chronopathology), plus kinetics and dynamics of medications (chronopharmacology), resulting in administration-time differences in efficacy and safety. Scheduling medications according to circadian rhythm determinants (chronotherapy) can improve treatment effects, for example, before dinner/bedtime ingestion of cholesterol-lowering medications and acetylsalicylic acid, respectively, exerts enhanced control of hypercholesterolemia and after-awakening peak of platelet aggregation; bedtime ingestion of conventional hypertension medications optimizes normalization of sleep-time blood pressure (BP)-strongest independent BP marker of cardiovascular disease (CVD) risk-and most effectively prevents (chronoprevention) CVD morbidity and mortality. Exploration of chronotherapeutic strategies to improve management of cardiac arrhythmias and vascular pathophysiology is still awaited.


Asunto(s)
Ritmo Circadiano , Hipertensión , Antihipertensivos/uso terapéutico , Presión Sanguínea , Monitoreo Ambulatorio de la Presión Arterial , Cronoterapia , Humanos , Hipertensión/tratamiento farmacológico
11.
Vascul Pharmacol ; 135: 106807, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33130246

RESUMEN

AIM: Cell therapies are hampered by poor survival and growth of grafts. We tested whether forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD) improves post-infarct revascularization and tissue repair by adipose tissue-derived mesenchymal stromal cells (AT-MSCs). METHODS AND RESULTS: We transplanted AT-MSCs overexpressing MYOCD and TERT in a murine model of acute myocardial infarction (AMI). We characterized paracrine effects of AT-MSCs. When transplanted into infarcted hearts of C57BL/6 mice, AT-MSCs overexpressing TERT and MYOCD decreased scar tissue and the intra-scar CD3 and B220 lymphocyte infiltration; and increased arteriolar density as well as ejection fraction compared with saline or mock-transduced AT-MSCs. These effects were accompanied by higher persistence of the injected cells in the heart, increased numbers of Ki-67+ and CD117+ cells, and the expression of cardiac actin and ß-myosin heavy chain. Intramyocardial delivery of the secretome and its extracellular vesicle (EV)-enriched fraction also decreased scar tissue formation and increased arteriolar density in the murine AMI model. Proteomic analysis of AT-MSCs-EV-enriched fraction predicted the activation of vascular development and the inhibition of immune cell trafficking. Elevated concentrations of miR-320a, miR-150-5p and miR-126-3p associated with regulation of apoptosis and vasculogenesis were confirmed in the AT-MSCs-EV-enriched fraction. CONCLUSIONS: AT-MSCs overexpressing TERT and MYOCD promote persistence of transplanted aged AT-MSCs and enhance arteriolar density in a murine model of AMI. EV-enriched fraction is the component of the paracrine secretion by AT-MSCs with pro-angiogenic and anti-fibrotic activities.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/enzimología , Infarto del Miocardio/cirugía , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Regeneración , Telomerasa/metabolismo , Transactivadores/metabolismo , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Vesículas Extracelulares/enzimología , Vesículas Extracelulares/trasplante , Fibrosis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Proteínas Nucleares/genética , Comunicación Paracrina , Recuperación de la Función , Transducción de Señal , Telomerasa/genética , Transactivadores/genética
12.
Cell Rep ; 32(11): 108140, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937135

RESUMEN

FBXL21 is a clock-controlled E3 ligase modulating circadian periodicity via subcellular-specific CRYPTOCHROME degradation. How FBXL21 regulates tissue-specific circadian physiology and what mechanism operates upstream is poorly understood. Here we report the sarcomere component TCAP as a cytoplasmic substrate of FBXL21. FBXL21 interacts with TCAP in a circadian manner antiphasic to TCAP accumulation in skeletal muscle, and circadian TCAP oscillation is disrupted in Psttm mice with an Fbxl21 hypomorph mutation. GSK-3ß phosphorylates FBXL21 and TCAP to activate FBXL21-mediated, phosphodegron-dependent TCAP degradation. GSK-3ß inhibition or knockdown diminishes FBXL21-Cul1 complex formation and delays FBXL21-mediated TCAP degradation. Finally, Psttm mice show significant skeletal muscle defects, including impaired fiber size, exercise tolerance, grip strength, and response to glucocorticoid-induced atrophy, in conjunction with cardiac dysfunction. These data highlight a circadian regulatory pathway where a GSK-3ß-FBXL21 functional axis controls TCAP degradation via SCF complex formation and regulates skeletal muscle function.


Asunto(s)
Ritmo Circadiano , Conectina/metabolismo , Proteínas F-Box/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Músculo Esquelético/fisiología , Proteolisis , Secuencia de Aminoácidos , Animales , Conectina/química , Células HEK293 , Humanos , Lisina/metabolismo , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Mutación/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Especificidad por Sustrato , Ubiquitinación
13.
Eur J Heart Fail ; 22(11): 1994-2006, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32683753

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a major health crisis and a worldwide pandemic. COVID-19 is characterized by high infectivity, long incubation period, diverse clinical presentations, and strong transmission intensity. COVID-19 can cause myocardial injury as well as other cardiovascular complications, particularly in senior patients with pre-existing medical conditions. The current review summarizes the epidemiological characteristics, potential mechanisms, clinical manifestations, and recent progress in the management of COVID-19 cardiovascular complications.


Asunto(s)
COVID-19/complicaciones , Enfermedades Cardiovasculares/virología , COVID-19/epidemiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/terapia , Humanos , Pandemias , Factores de Riesgo , SARS-CoV-2
14.
Open Heart ; 7(1)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32393654

RESUMEN

OBJECTIVE: To test whether intensive atorvastatin (ATV) increases the efficacy of transplantation with autologous bone marrow mononuclear cells (MNCs) in patients suffering from anterior ST-elevated myocardial infarction (STEMI). METHODS: This clinical trial was under a 2×2 factorial design, enrolling 100 STEMI patients, randomly into four groups of regular (RA) or intensive ATV (IA) with MNCs or placebo. The primary endpoint was the change of left ventricular ejection fraction (LVEF) at 1-year follow-up from baseline, primarily assessed by MRI. The secondary endpoints included other parameters of cardiac function, remodelling and regeneration determined by MRI, echocardiography, positron emission tomography (PET) and biomarkers. RESULTS: All the STEMI patients with transplantation of MNCs showed significantly increased LVEF change values than those with placebo (p=0.01) with only in the IA+MNCs patients group demonstrating significantly elevation of LVEF than in the IA+placebo group (+12.6% (95%CI 10.4 to 19.3) vs +5.0% (95%CI 4.0 to 10.0), p=0.001), pointing to a better synergy between ATV and MNCs (p=0.019). PET analysis revealed significantly increased viable areas of myocardium (p=0.015), while the scar sizes (p=0.026) and blood aminoterminal pro-B-type natriuretic peptide (p<0.034) reduced. All these above benefits of MNCs were also attributed to IA+MNCs instead of RA+MNCs group of patients with STEMI. CONCLUSIONS: Intensive ATV treatment augments the therapeutic efficacy of MNCs in patients with anterior STEMI at the convalescent stage. The treatment with the protocol of intensive ATV and MNC combination offers a clinically essential approach for myocardial infarction. TRIAL REGISTRATION NUMBER: NCT00979758.


Asunto(s)
Atorvastatina/administración & dosificación , Trasplante de Médula Ósea , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Infarto del Miocardio con Elevación del ST/terapia , Adulto , Anciano , Atorvastatina/efectos adversos , Beijing , Trasplante de Médula Ósea/efectos adversos , Terapia Combinada , Método Doble Ciego , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Masculino , Persona de Mediana Edad , Recuperación de la Función , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/fisiopatología , Volumen Sistólico , Factores de Tiempo , Trasplante Autólogo , Resultado del Tratamiento , Función Ventricular Izquierda , Remodelación Ventricular
15.
Cardiovasc Pathol ; 47: 107228, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32375085

RESUMEN

The pandemic of coronavirus disease 2019 (COVID-19) has emerged as a major health crisis, with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) having infected over a million people around the world within a few months of its identification as a human pathogen. Initially, SARS-CoV-2 infects cells in the respiratory system and causes inflammation and cell death. Subsequently, the virus spreads out and damages other vital organs and tissues, triggering a complicated spectrum of pathophysiological changes and symptoms, including cardiovascular complications. Acting as the receptor for SARS-CoV entering mammalian cells, angiotensin converting enzyme-2 (ACE2) plays a pivotal role in the regulation of cardiovascular cell function. Diverse clinical manifestations and laboratory abnormalities occur in patients with cardiovascular injury in COVID-19, characterizing the development of this complication, as well as providing clues to diagnosis and treatment. This review provides a summary of the rapidly appearing laboratory and clinical evidence for the pathophysiology and therapeutic approaches to COVID-19 pulmonary and cardiovascular complications.


Asunto(s)
Enfermedades Cardiovasculares/virología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/fisiopatología , Lesión Pulmonar/virología , Neumonía Viral/complicaciones , Neumonía Viral/fisiopatología , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/terapia , Humanos , Pandemias , Neumonía Viral/terapia , SARS-CoV-2
16.
Vascular ; 28(4): 465-474, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32089109

RESUMEN

OBJECTIVE: Calcification serves as a surrogate for atherosclerosis-associated vascular diseases, and coronary artery calcification is mediated by multiple pathogenic factors. Estrogen is a known factor that protects the arterial wall against atherosclerosis, but its role in the coronary artery calcification development remains largely unclear. This study tested the hypothesis that estrogen inhibits coronary artery calcification via the hypoxia-induced factor-1α pathway. METHODS: Eight-week-old healthy female Sprague-Dawley rats were castrated, and vitamin D3 was administered orally to establish. Hypoxia-induced factor-1 inhibitor was administered to test its effect on vascular calcification and expression of bone morphogenetic protein 2 and runt-related transcription factor-2. Vascular smooth muscle cell calcification was induced with CaCl2 in rat aortic smooth muscle cells in the presence or absence of E2(17ß-estradiol) and bone morphogenetic protein 2 siRNA intervention. RESULTS: The estrogen levels in ovariectomized rats were significantly decreased, as determined by ELISA. Expression of hypoxia-induced factor-1α mRNA and protein was significantly increased in vascular cells with calcification as compared to those without calcification (p < 0.01). E2 treatment decreased the calcium concentration in vascular cell calcification and cell calcium nodules in vitro (p < 0.05). E2 also lowered the levels of hypoxia-induced factor-1α mRNA and protein (p < 0.01). Oral administration of the hypoxia-induced factor-1α inhibitor dimethyloxetane in castrated rats alleviated vascular calcification and expression of osteogenesis-related transcription factors, bone morphogenetic protein 2 and RUNX2 (p < 0.01). Finally, bone morphogenetic protein 2 siRNA treatment decreased the levels of p-Smad1/5/8 in A7r5 calcification cells (p < 0.01). CONCLUSION: Estrogen deficiency enhances vascular calcification. Treatment with estrogen reduces the expression of hypoxia-induced factor-1α as well as vascular calcification in rats. The estrogen effects occur in a fashion dependent on hypoxia-induced factor-1α regulation of bone morphogenetic protein-2 and downstream Smad1/5/8.


Asunto(s)
Enfermedades de la Aorta/prevención & control , Estradiol/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Calcificación Vascular/prevención & control , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ovariectomía , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal , Proteínas Smad Reguladas por Receptores/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
17.
Vascul Pharmacol ; 127: 106651, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32044414

RESUMEN

Aspirin is a widely used drug with anti-coagulating and anti-inflammatory effects on atherosclerotic vascular disease. The goal of this study was to investigate expression of microRNA (miR) in association with changes in arachidonic acid (AA) metabolism in cardiac and surrounding fat mesenchymal stem cells (MSCs) treated with or without aspirin. Aspirin-targeted endogenous lipid metabolites that impact specific miRNA expression were examined by mass spectrometry. The pattern of miR expression was characterized using a microarray of 1100 miRs. There were a dozen miRs expressed differentially in MSCs from human myocardium and peri-myocardial fat tissue at baseline, including hsa-miR-1307-3p, 765, 4739, 3613-3p, 4281, 6816-5p, 2861, and 146b-5p. After exposure to aspirin, cardiac MSCs expressed an array of of miRs (eg, hsa-miR-4734, 10a-5p, 4267, 3197, and 3182), while generation of their endogenous AA metabolites was depressed. However, in the peri-cardiac adipose tissue-derived MSCs, treatment with the same doses of aspirin caused mild changes in the miR expression levels. In conclusion, MSCs from human myocardium and peri-myocardial fat tissue respond differentially to aspirin treatment by alterations in miR expression and AA metabolism. The study further raises an intriguing issue as to whether the copious amounts of aspirin taken worldwide by patients with cardiovascular disease may have direct impacts on their heart repair processes by regulation of stromal cell miR expression and AA metabolism.


Asunto(s)
Tejido Adiposo/citología , Anticoagulantes/farmacología , Ácido Araquidónico/metabolismo , Aspirina/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , MicroARNs/metabolismo , Miocardio/citología , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Fenotipo , Transcriptoma
18.
J Cell Mol Med ; 24(5): 2857-2865, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31970899

RESUMEN

Increased stiffness characterizes the early change in the arterial wall with subclinical atherosclerosis. Proteins inducing arterial stiffness in diabetes and hypercholesterolaemia are largely unknown. This study aimed at determining the pattern of protein expression in stiffening aorta of diabetic and hypercholesterolaemic mice. Male Ins2+/Akita mice were crossbred with ApoE-/- (Ins2+/Akita : ApoE-/- ) mice. Relative aortic distension (relD) values were determined by ultrasound analysis and arterial stiffness modulators by immunoblotting. Compared with age- and sex-matched C57/BL6 control mice, the aortas of Ins2+/Akita , ApoE-/- and Ins2+/Akita :ApoE-/- mice showed increased aortic stiffness. The aortas of Ins2+/Akita , ApoE-/- and Ins2+/Akita :ApoE-/- mice showed greater expression of VCAM-1, collagen type III, NADPH oxidase and iNOS, as well as reduced elastin, with increased collagen type III-to-elastin ratio. The aorta of Ins2+/Akita and Ins2+/Akita :ApoE-/- mice showed higher expression of eNOS and cytoskeletal remodelling proteins, such as F-actin and α-smooth muscle actin, in addition to increased glycosylated aquaporin (AQP)-1 and transcription factor NFAT5, which control the expression of genes activated by high glucose-induced hyperosmotic stress. Diabetic and hypercholesterolaemic mice have increased aortic stiffness. The association of AQP1 and NFAT5 co-expression with aortic stiffness in diabetes and hypercholesterolaemia may represent a novel molecular pathway or therapeutic target.


Asunto(s)
Acuaporina 1/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Factores de Transcripción/metabolismo , Rigidez Vascular , Animales , Colágeno Tipo III/metabolismo , Citoesqueleto/metabolismo , Elastina/metabolismo , Glicosilación , Masculino , Ratones Endogámicos C57BL , Músculo Liso/metabolismo , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa/metabolismo , Fenotipo , Isoformas de Proteínas/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
19.
Front Cardiovasc Med ; 7: 585220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505992

RESUMEN

Background: Myocardial injury is a life-threatening complication of coronavirus disease 2019 (COVID-19). Pre-existing health conditions and early morphological alterations may precipitate cardiac injury and dysfunction after contracting the virus. The current study aimed at assessing potential risk factors for COVID-19 cardiac complications in patients with pre-existing conditions and imaging predictors. Methods and Results: The multi-center, retrospective cohort study consecutively enrolled 400 patients with lab-confirmed COVID-19 in six Chinese hospitals remote to the Wuhan epicenter. Patients were diagnosed with or without the complication of myocardial injury by history and cardiac biomarker Troponin I/T (TnI/T) elevation above the 99th percentile upper reference limit. The majority of COVID-19 patients with myocardial injury exhibited pre-existing health conditions, such as hypertension, diabetes, hypercholesterolemia, and coronary disease. They had increased levels of the inflammatory cytokine interleukin-6 and more in-hospital adverse events (admission to an intensive care unit, invasive mechanical ventilation, or death). Chest CT scan on admission demonstrated that COVID-19 patients with myocardial injury had higher epicardial adipose tissue volume ([EATV] 139.1 (83.8-195.9) vs. 92.6 (76.2-134.4) cm2; P = 0.036). The optimal EATV cut-off value (137.1 cm2) served as a useful factor for assessing myocardial injury, which yielded sensitivity and specificity of 55.0% (95%CI, 32.0-76.2%) and 77.4% (95%CI, 71.6-82.3%) in adverse cardiac events, respectively. Multivariate logistic regression analysis showed that EATV over 137.1 cm2 was a strong independent predictor for myocardial injury in patients with COVID-19 [OR 3.058, (95%CI, 1.032-9.063); P = 0.044]. Conclusions: Augmented EATV on admission chest CT scan, together with the pre-existing health conditions (hypertension, diabetes, and hyperlipidemia) and inflammatory cytokine production, is associated with increased myocardial injury and mortality in COVID-19 patients. Assessment of pre-existing conditions and chest CT scan EATV on admission may provide a threshold point potentially useful for predicting cardiovascular complications of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...