Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1404649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100665

RESUMEN

The type I interferon (IFN) pathway is important for eukaryotic cells to resist viral infection, as well as an impediment to efficient virus replication. Therefore, this study aims to create an IFNAR1 knockout (KO) Madin-Darby bovine kidney (MDBK) cell line using CRISPR/Cas9 and investigate its application and potential mechanism in increasing viral replication of bovines. The IFNAR1 KO cells showed increased titers of bovine viral diarrhea virus (BVDV) (1.5 log10), with bovine enterovirus and bovine parainfluenza virus type 3 (0.5-0.8 log10). RNA-seq revealed reduced expression of the genes related IFN-I pathways including IFNAR1, STAT3, IRF9, and SOCS3 in IFNAR1 KO cells compared with WT cells. In WT cells, 306 differentially expressed genes (DEGs) were identified between BVDV-infected and -uninfected cells. Of these, 128 up- and 178 down-regulated genes were mainly associated with growth cycle and biosynthesis, respectively. In IFNAR1 KO cells, 286 DEGs were identified, with 82 up-regulated genes were associated with signaling pathways, and 204 down-regulated genes. Further, 92 DEGs were overlapped between WT and IFNAR1 KO cells including ESM1, IL13RA2, and SLC25A34. Unique DEGs in WT cells were related to inflammation and immune regulation, whereas those unique in IFNAR1 KO cells involved in cell cycle regulation through pathways such as MAPK. Knocking down SLC25A34 and IL13RA2 in IFNAR1 KO cells increased BVDV replication by 0.3 log10 and 0.4 log10, respectively. Additionally, we constructed an IFNAR1/IFNAR2 double-knockout MDBK cell line, which further increased BVDV viral titers compared with IFNAR1 KO cells (0.6 log10). Overall, the IFNAR1 KO MDBK cell line can support better replication of bovine viruses and therefore provides a valuable tool for bovine virus research on viral pathogenesis and host innate immune response.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Receptor de Interferón alfa y beta , Replicación Viral , Animales , Bovinos , Receptor de Interferón alfa y beta/genética , Línea Celular , Virus de la Diarrea Viral Bovina/fisiología , Virus de la Diarrea Viral Bovina/genética
2.
Viruses ; 16(3)2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38543767

RESUMEN

Bovine parainfluenza virus type 3 (BPIV-3) is one of the major pathogens of the bovine respiratory disease complex (BRDC). BPIV-3 surveillance in China has been quite limited. In this study, we used PCR to test 302 cattle in China, and found that the positive rate was 4.64% and the herd-level positive rate was 13.16%. Six BPIV-3C strains were isolated and confirmed by electron microscopy, and their titers were determined. Three were sequenced by next-generation sequencing (NGS). Phylogenetic analyses showed that all isolates were most closely related to strain NX49 from Ningxia; the genetic diversity of genotype C strains was lower than strains of genotypes A and B; the HN, P, and N genes were more suitable for genotyping and evolutionary analyses of BPIV-3. Protein variation analyses showed that all isolates had mutations at amino acid sites in the proteins HN, M, F, and L. Genetic recombination analyses provided evidence for homologous recombination of BPIV-3 of bovine origin. The virulence experiment indicated that strain Hubei-03 had the highest pathogenicity and could be used as a vaccine candidate. These findings apply an important basis for the precise control of BPIV-3 in China.


Asunto(s)
Virus de la Parainfluenza 3 Bovina , Virus de la Parainfluenza 3 Humana , Animales , Bovinos , Virulencia , Filogenia , Prevalencia , Virus de la Parainfluenza 3 Bovina/genética , China/epidemiología
3.
Genes (Basel) ; 13(5)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35627121

RESUMEN

Lumpy skin disease (LSD) is a severe and highly infectious pox disease of cattle caused by the lumpy skin disease virus (LSDV). To facilitate early control of LSD, this study aimed to develop a new rapid on-site LSDV detection method using an orf068 gene-based recombinase polymerase amplification assay (RPA) coupled with a CRISPR-Cas12a-based fluorescence assay (RPA-Cas12a-fluorescence assay). The results showed that the sensitivity of our RPA-Cas12a-fluorescence assay for detecting LSDV orf068 gene reached 5 copies/µL with plasmid as a template, and 102 TCID50/mL with viral genomic DNA as a template. No cross-reaction with other common bovine viruses was observed. Further, an on-site RPA-Cas12a-fluorescence assay of 40 clinical samples from cattle with or without LSD showed a diagnostic sensitivity of 96.3% (95% CI: 81.0-99.9%) and specificity of 92.31% (95% CI: 62.1-99.6%), which was close to those of the quantitative PCR assay. Therefore, our RPA-Cas12a-fluorescence assay has promising prospects in on-site rapid LSDV detection.


Asunto(s)
Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Sistemas CRISPR-Cas , ADN Viral/genética , Virus de la Dermatosis Nodular Contagiosa/genética , Nucleotidiltransferasas/genética , Recombinasas/genética , Recombinasas/metabolismo , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA