Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Chem ; 12: 1339364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318112

RESUMEN

Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.

2.
PeerJ ; 11: e16177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868063

RESUMEN

Trace elements play a crucial role in the growth and bioactive substance content of medicinal plants, but their utilization efficiency in soil is often low. In this study, soil and Aconitum carmichaelii samples were collected and measured from 22 different locations, followed by an analysis of the relationship between trace elements and the yield and alkaloid content of the plants. The results indicated a significant positive correlation between zinc, trace elements in the soil, and the yield and alkaloid content of A. carmichaelii. Subsequent treatment of A. carmichaelii with both bulk zinc oxide (ZnO) and zinc oxide nanoparticles (ZnO NPs) demonstrated that the use of ZnO NPs significantly enhanced plant growth and monoester-type alkaloid content. To elucidate the underlying mechanisms responsible for these effects, metabolomic analysis was performed, resulting in the identification of 38 differentially expressed metabolites in eight metabolic pathways between the two treatments. Additionally, significant differences were observed in the rhizosphere bacterial communities, with Bacteroidota and Actinobacteriota identified as valuable biomarkers for ZnO NP treatment. Covariation analysis further revealed significant correlations between specific microbial communities and metabolite expression levels. These findings provide compelling evidence that nanoscale zinc exhibits much higher utilization efficiency compared to traditional zinc fertilizer.


Asunto(s)
Aconitum , Alcaloides , Microbiota , Oligoelementos , Óxido de Zinc , Óxido de Zinc/farmacología , Rizosfera , Zinc , Bacterias , Suelo
3.
Artículo en Inglés | MEDLINE | ID: mdl-33777160

RESUMEN

OBJECTIVE: Using network pharmacology research methods to explore the healing mechanism of American cockroach extract to accelerate wound healing after diabetic anal fistula surgery. METHOD: The main chemical constituents of extracts from Periplaneta americana were collected by literature retrieval. Chemical composition and targets related to diabetic anal fistula wound could be predicted based on PubChem, Swiss Target Prediction, OMIM, and GeneCards databases, and the putative targets of Periplaneta americana extraction (PAE) for diabetic anal fistula wound were obtained by Venn diagram. These common targets were predicted using the String database for protein-protein interaction (PPI) network and then screening key genes through Cytohubba. Meanwhile, the above targets were analyzed using the DAVID database for gene ontology (GO) enrichment analyses and the Kyoto Encyclopedia of Genes and Genomes (KEGG) path enrichment analyses. RESULTS: A total of 12 chemical components of PAE were obtained by literature retrieval, and 61 therapeutic targets that may accelerate the healing of diabetic anal fistula wounds were predicted by the database. According to PPI network analysis, PAE accelerates wound healing after diabetic anal fistula surgery which may be related to proteins such as AKT1, VEGFA, EGFR, CASP3, STAT3, MAPK1, TNF, JUN, ESR1, and MMP9. GO analysis results show that targets of PAE to promote wound healing were mainly involved in biological processes such as cell proliferation, macrophage differentiation, angiogenesis, and response to hypoxia. KEGG analysis showed that the target genes were mainly concentrated in the PI3K-Akt signaling pathway, HIF-1 signaling pathway, and estrogen signaling pathway. CONCLUSION: Periplaneta americana extract regulates multiple targets and multiple pathways to promote wound healing after diabetic anal fistula surgery. PI3K-Akt signaling pathway, HIF-1 signaling pathway, and sex hormone signaling pathway may be key pathways in the process of Periplaneta americana extract promoting wound healing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA