Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 43(5): 1012-1029, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415986

RESUMEN

The use of novel high-throughput sequencing (HTS) technologies to examine the responses of natural multidomain microbial communities to scrubber effluent discharges to the marine environment is still limited. Thus, we applied metabarcoding sequencing targeting the planktonic unicellular eukaryotic and prokaryotic fraction (phytoplankton, bacterioplankton, and protozooplankton) in mesocosm experiments with natural microbial communities from a polluted and an unpolluted site. Furthermore, metagenomic analysis revealed changes in the taxonomic and functional dominance of multidomain marine microbial communities after scrubber effluent additions. The results indicated a clear shift in the microbial communities after such additions, which favored bacterial taxa with known oil and polycyclic aromatic hydrocarbons (PAHs) biodegradation capacities. These bacteria exhibited high connectedness with planktonic unicellular eukaryotes employing variable trophic strategies, suggesting that environmentally relevant bacteria can influence eukaryotic community structure. Furthermore, Clusters of Orthologous Genes associated with pathways of PAHs and monocyclic hydrocarbon degradation increased in numbers at treatments with high scrubber effluent additions acutely. These genes are known to express enzymes acting at various substrates including PAHs. These indications, in combination with the abrupt decrease in the most abundant PAHs in the scrubber effluent below the limit of detection-much faster than their known half-lives-could point toward a bacterioplankton-initiated rapid ultimate biodegradation of the most abundant toxic contaminants of the scrubber effluent. The implementation of HTS could be a valuable tool to develop multilevel biodiversity indicators of the scrubber effluent impacts on the marine environment, which could lead to improved impact assessment. Environ Toxicol Chem 2024;43:1012-1029. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Microbiota/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Hidrocarburos Policíclicos Aromáticos , Bacterias/genética , Biodegradación Ambiental , Agua de Mar/microbiología , Petróleo , Plancton/genética
2.
J Environ Manage ; 326(Pt B): 116717, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399810

RESUMEN

Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregates can eliminate the aeration requirements and significantly reduce the high biomass harvesting costs associated with algal monocultures. A sequencing batch reactor (SBR) setup operating with and without biomass recirculation was used to investigate pollutant removal rates, aggregation capacity and microbial community characteristics under a range of hydraulic retention times (HRTs) and solid retention times (SRTs). It was observed that biomass recirculation strategy significantly enhanced aggregation and pollutant removal (i.e., 78.7%, 94.2% and 75.2% for d-COD, TKN, and PO43--P, respectively). The microbial community established was highly diverse consisting of 161 Bacterial Operational Taxonomic Units (B-OTUs) and 16 unicellular Eukaryotic OTUs (E-OTUs). Escalation the optimal conditions (i.e., HRT = 4 d, SRT = 10 d) at pilot-scale resulted in nutrient starvation leading to 38-44% w/w carbohydrate accumulation. The harvested biomass was converted to bioethanol after acid hydrolysis followed by fermentation with Saccharomyces cerevisiae achieving a bioethanol production yield of 0.076 g bioethanol/g biomass. These data suggest that bioethanol production coupled with high-performance wastewater treatment using algal-bacterial aggregates is feasible, albeit less productive concerning bioethanol yields than systems exclusively designed for third and fourth-generation biofuel production.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Biocombustibles , Purificación del Agua/métodos , Aguas del Alcantarillado/microbiología , Biomasa
3.
Environ Pollut ; 312: 120038, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36030951

RESUMEN

Understanding the processes that underlay an ecological disaster represents a major scientific challenge. Here, we investigated phytoplankton and zooplankton community changes before and during a fauna mass kill in a European protected wetland. Evidence on gradual development and collapse of harmful phytoplankton blooms, allowed us to delineate the biotic and abiotic interactions that led to this ecological disaster. Before the mass fauna kill, mixed blooms of known harmful cyanobacteria and the killer alga Prymnesium parvum altered biomass flow and minimized zooplankton resource use efficiency. These blooms collapsed under high nutrient concentrations and inhibitory ammonia levels, with low phytoplankton biomass leading to a dramatic drop in photosynthetic oxygenation and a shift to a heterotrophic ecosystem phase. Along with the phytoplankton collapse, extremely high numbers of red planktonic crustaceans-Daphnia magna, visible through satellite images, indicated low oxygen conditions as well as a decrease or absence of fish predation pressure. Our findings provide clear evidence that the mass episode of fish and birds kill resulted through severe changes in phytoplankton and zooplankton dynamics, and the alternation on key abiotic conditions. Our study highlights that plankton-related ecosystem functions mirror the accumulated heavy anthropogenic impacts on freshwaters and could reflect a failure in conservation and restoration measures.


Asunto(s)
Ecosistema , Fitoplancton , Amoníaco , Animales , Aves , Peces , Oxígeno , Plancton , Humedales , Zooplancton
4.
Front Plant Sci ; 12: 713984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484277

RESUMEN

Plant-associated beneficial strains inhabiting plants grown under harsh ecosystems can help them cope with abiotic stress factors by positively influencing plant physiology, development, and environmental adaptation. Previously, we isolated a potential plant growth promoting strain (AXSa06) identified as Pseudomonas oryzihabitans, possessing 1-aminocyclopropane-1-carboxylate deaminase activity, producing indole-3-acetic acid and siderophores, as well as solubilizing inorganic phosphorus. In this study, we aimed to further evaluate the effects of AXSa06 seed inoculation on the growth of tomato seedlings under excess salt (200 mM NaCl) by deciphering their transcriptomic and metabolomic profiles. Differences in transcript levels and metabolites following AXSa06 inoculation seem likely to have contributed to the observed difference in salt adaptation of inoculated plants. In particular, inoculations exerted a positive effect on plant growth and photosynthetic parameters, imposing plants to a primed state, at which they were able to respond more robustly to salt stress probably by efficiently activating antioxidant metabolism, by dampening stress signals, by detoxifying Na+, as well as by effectively assimilating carbon and nitrogen. The primed state of AXSa06-inoculated plants is supported by the increased leaf lipid peroxidation, ascorbate content, as well as the enhanced activities of antioxidant enzymes, prior to stress treatment. The identified signatory molecules of AXSa06-mediated salt tolerance included the amino acids aspartate, threonine, serine, and glutamate, as well as key genes related to ethylene or abscisic acid homeostasis and perception, and ion antiporters. Our findings represent a promising sustainable solution to improve agricultural production under the forthcoming climate change conditions.

5.
FEMS Microbiol Ecol ; 97(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34424315

RESUMEN

We attempted to mimic aeolian ecosystems to examine how filters posed by regional characteristics can influence the establishment and growth of airborne microcolonisers of a common air source. Using a natural single source of aerosols we applied a combined microscopy and high-throughput sequencing approach to examine the diversity, settling and growth potential of air-dispersed microbes in water containers representing newly formed aquatic colonisation habitats of different trophic states and salinity. Heterotrophic microeukaryotes were favoured as initial settlers when nutrients were low, while autotrophs rapidly proliferated in the high-nutrient containers, possibly due to favourable germinating conditions for their preferred mode of dispersal with resting spores. Following settling of colonisers, we investigated two contrasting hypotheses: if the different water colonisation habitats harboured the same microbial communities after establishment and growth periods, this would point towards a selection of best-fit cosmopolitan colonisers, regardless of habitat-specific characteristics. Alternatively, community dissimilarities after the growth period would suggest a selection of settlers due to bottom-up controls combined with priority effects. Both analyses suggested that the structure of the microbial communities in the different colonisation habitats were driven by nutrient content and salinity, showing clustering to similar bottom-up forces and dissimilarities in significantly different colonisation habitats.


Asunto(s)
Agua Dulce , Microbiota , Nutrientes , Agua
6.
BioTech (Basel) ; 10(3)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35822765

RESUMEN

Rheumatoid Arthritis (RA) is an autoimmune and inflammatory disease that affects the synovium (lining that surrounds the joints), causing the immune system to attack its own healthy tissues. Treatment options, to the current day, have serious limitations and merely offer short-term alleviation to the pain. Using a theoretical exercise based on literature, a new potentially viable therapy has been proposed. The new therapy focusses on a long-term treatment of RA based on gene therapy, which is only active when inflammation of the joint occurs. This treatment will prevent side effects of systemic application of drugs. Furthermore, the benefits of this treatment for the patient from a socio-economic perspective has been discussed, focusing on the quality of life of the patent and lower costs for the society.

7.
Microorganisms ; 8(11)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142812

RESUMEN

The aim of the study was to investigate the bacterial community diversity and structure by means of 16S rRNA gene high-throughput amplicon sequencing, in the rhizosphere and phyllosphere of halophytes and drought-tolerant plants in Mediterranean ecosystems with different soil properties. The locations of the sampled plants included alkaline, saline-sodic soils, acidic soils, and the volcanic soils of Santorini Island, differing in soil fertility. Our results showed high bacterial richness overall with Proteobacteria and Actinobacteria dominating in terms of OTUs number and indicated that variable bacterial communities differed depending on the plant's compartment (rhizosphere and phyllosphere), the soil properties and location of sampling. Furthermore, a shared pool of generalist bacterial taxa was detected independently of sampling location, plant species, or plant compartment. We conclude that the rhizosphere and phyllosphere of native plants in stressed Mediterranean ecosystems consist of common bacterial assemblages contributing to the survival of the plant, while at the same time the discrete soil properties and environmental pressures of each habitat drive the development of a complementary bacterial community with a distinct structure for each plant and location. We suggest that this trade-off between generalist and specialist bacterial community is tailored to benefit the symbiosis with the plant.

8.
Sci Rep ; 10(1): 14857, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908201

RESUMEN

Plant growth promoting rhizobacteria (PGPR) are able to provide cross-protection against multiple stress factors and facilitate growth of their plant symbionts in many ways. The aim of this study was to isolate and characterize rhizobacterial strains under natural conditions, associated with naturally occurring representatives of wild plant species and a local tomato cultivar, growing in differently stressed Mediterranean ecosystems. A total of 85 morphologically different rhizospheric strains were isolated; twenty-five exhibited multiple in vitro PGP-associated traits, including phosphate solubilization, indole-3-acetic acid production, and 1-aminocyclopropane-1-carboxylate deaminase activity. Whole genome analysis was applied to eight selected strains for their PGP potential and assigned seven strains to Gammaproteobacteria, and one to Bacteroidetes. The genomes harboured numerous genes involved in plant growth promotion and stress regulation. They also support the notion that the presence of gene clusters with potential PGP functions is affirmative but not necessary for a strain to promote plant growth under abiotic stress conditions. The selected strains were further tested for their ability to stimulate growth under stress. This initial screening led to the identification of some strains as potential PGPR for increasing crop production in a sustainable manner.


Asunto(s)
Sequías , Raíces de Plantas/microbiología , Rizosfera , Plantas Tolerantes a la Sal , Solanum lycopersicum , Bacteroidetes/fisiología , Gammaproteobacteria/fisiología , Grecia , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Microbiota , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Plantas Tolerantes a la Sal/microbiología , Microbiología del Suelo
9.
Microorganisms ; 7(11)2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683878

RESUMEN

We explore how the phyllosphere microbial community responds to a very seasonal environment such as the Mediterranean. For this, we studied the epiphytic bacterial community of a Mediterranean ecosystem in summer and winter, expecting to detect seasonal differences at their maximum. With high-throughput sequencing (HTS), we detected the operational taxonomic units (OTUs) present in the phyllosphere and also in the surrounding air. The epiphytic community is approximately five orders of magnitude denser than the airborne one and is made almost exclusively by habitat specialists. The two communities differ considerably but Proteobacteria and Actinobacteria are dominant in both. Of the five most abundant phyllosphere OTUs, two were closely related to Sphingomonas strains, one to Methylobacterium and the other two to Rhizobiales and Burkholderiales. We found the epiphytic community to become much richer, more distinct, even and diverse, denser and more connected in summer. In contrast, there was no difference in the level of bacterial colonization of the phyllosphere between the two seasons, although there were seasonal differences for individual taxonomic groups: Firmicutes, Gemmatimonadetes and Chlroroflexi had a higher participation in summer, whereas the major Proteobacteria classes presented reverse patterns, with Betaproteobacteria increasing in summer at the expense of the prominent Alphaproteobacteria.

10.
Oecologia ; 191(2): 461-474, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31501978

RESUMEN

Climate change has been altering the ocean environment, affecting as a consequence the biological communities including microorganisms. We performed a mesocosm experiment to test whether biodiversity loss caused by one stressor would influence plankton community sensitivity to a subsequent stressor, as envisioned in Vinebrooke's multiple stressor concept. A natural Baltic Sea diatom-dominated phytoplankton assemblage was used as a model system where we examined whether a preceding heat shock would affect the community's response to changing salinity. Initially, the community was treated by a short-term temperature increase of 6 °C, which resulted in a loss of species compared to the control. Thereafter, the control and the heat-shocked communities were subject to a salinity change (- 5 psu, control, + 5 psu). The species Skeletonema dohrnii, Thalassiosira anguste-lineata, Thalassiosira nordenskioeldii, Chaetoceros socialis and Ditylum brightwellii were major components of the control and heat-shocked assemblages (> 80% of the total biomass). We examined the effect on species composition and biodiversity (morphospecies and operational taxonomic units (OTUs) related to phytoplankton) and on phytoplankton biomass. In addition, we explored the single species response of five dominant diatoms on these environmental perturbations. Our results showed that increased salinity significantly reduced the OTUs richness both in the control and the less diverse heated community as well as the phytoplankton biomass in the heated community. On the other hand, decreased salinity significantly increased species richness and phytoplankton biomass in both communities and OTUs richness in the control community. The five dominant diatoms reached their highest biomass under decreased salinity and responded negatively to increased salinity (lower biomass than ambient salinity). Contrary to Vinebrooke's multiple stressor concept, there was no indication that the heat treatment had altered the community's sensitivity to the salinity stress in our study system.


Asunto(s)
Diatomeas , Fitoplancton , Biodiversidad , Respuesta al Choque Térmico , Salinidad
11.
Pathogens ; 8(1)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893890

RESUMEN

Ready-to-eat (RTE) leafy salad vegetables are considered foods that can be consumed immediately at the point of sale without further treatment. The aim of the study was to investigate the bacterial community composition of RTE salads at the point of consumption and the changes in bacterial diversity and composition associated with different household washing treatments. The bacterial microbiomes of rocket and spinach leaves were examined by means of 16S rRNA gene high-throughput sequencing. Overall, 886 Operational Taxonomic Units (OTUs) were detected in the salads' leaves. Proteobacteria was the most diverse high-level taxonomic group followed by Bacteroidetes and Firmicutes. Although they were processed at the same production facilities, rocket showed different bacterial community composition than spinach salads, mainly attributed to the different contributions of Proteobacteria and Bacteroidetes to the total OTU number. The tested household decontamination treatments proved inefficient in changing the bacterial community composition in both RTE salads. Furthermore, storage duration of the salads at refrigeration temperatures affected the microbiome, by decreasing the bacterial richness and promoting the dominance of psychrotropic bacteria. Finally, both salads were found to be a reservoir of opportunistic human pathogens, while washing methods usually applied at home proved to be inefficient in their removal.

12.
Front Microbiol ; 9: 2444, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356732

RESUMEN

Climate change has profound impacts on marine biodiversity and biodiversity changes in turn might affect the community sensitivity to impacts of abiotic changes. We used mesocosm experiments and Next Generation Sequencing to study the response of the natural Baltic and Mediterranean unicellular eukaryotic plankton communities (control and +6°C heat shock) to subsequent salinity changes (-5 psu, +5 psu). The impact on Operational Taxonomic Unit (OTU) richness, taxonomic and functional composition and rRNA:rDNA ratios were examined. Our results showed that heat shock leads to lower OTU richness (21% fewer OTUs in the Baltic and 14% fewer in the Mediterranean) and a shift in composition toward pico- and nanophytoplankton and heterotrophic related OTUs. Heat shock also leads to increased rRNA:rDNA ratios for pico- and micrograzers. Less than 18% of shared OTUs were found among the different salinities indicating the crucial role of salinity in shaping communities. The response of rRNA:rDNA ratios varied highly after salinity changes. In both experiments the diversity decrease brought about by heat shock influenced the sensitivity to salinity changes. The heat shock either decreased or increased the sensitivity of the remaining community, depending on whether it removed the more salinity-sensitive or the salinity-tolerant taxa.

13.
PLoS One ; 13(5): e0196987, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29746519

RESUMEN

The diversity of planktonic eukaryotic microbes was studied at a coastal station of the eastern English Channel (EEC) from March 2011 to July 2015 (77 samples) using high throughput sequencing (454-pyrosequencing and Illumina) of the V2-V3 hypervariable region of the 18S SSU rDNA gene. Similar estimations of OTU relative abundance and taxonomic distribution for the dominant higher taxonomic groups (contributing >1% of the total number of OTUs) were observed with the two methods (Kolmogorov-Smirnov p-value = 0.22). Eight super-groups were identified throughout all samples: Alveolata, Stramenopiles, Opisthokonta, Hacrobia, Archeaplastida, Apusozoa, Rhizaria, and Amoebozoa (ordered by decreasing OTU richness). To gain further insight into microbial activity in the EEC, ribosomal RNA was extracted for samples from 2013-2015 (30 samples). Analysis of 18S rDNA and rRNA sequences led to the detection of 696 and 700 OTUs, respectively. Cluster analysis based on OTUs' abundance indicated three major seasonal groups that were associated to spring, winter/autumn, and summer conditions. The clusters inferred from rRNA data showed a clearer seasonal representation of the community succession than the one based on rDNA. The rRNA/rDNA ratio was used as a proxy for relative cell activity. When all OTUs were considered, the average rRNA:rDNA ratio showed a linear trend around the 1:1 line, suggesting a linear relation between OTU abundance (rDNA) and activity (rRNA). However, this ratio was highly variable over time when considering individual OTUs. Interestingly, the OTU affiliated with P. globosa displayed rRNA:rDNA ratio that allowed to delimit high vs low abundance and high vs low activity periods. It unveiled quite well the Phaeocystis bloom dynamic regarding cell proliferation and activity, and could even be used as early indicator of an upcoming bloom.


Asunto(s)
Biodiversidad , Eutrofización/fisiología , Haptophyta , Modelos Biológicos , Fitoplancton , Microbiología del Agua , Haptophyta/genética , Haptophyta/crecimiento & desarrollo , Fitoplancton/genética , Fitoplancton/crecimiento & desarrollo
14.
Environ Sci Pollut Res Int ; 25(18): 17957-17966, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29680892

RESUMEN

A mixed cyanobacterial-mixotrophic algal population, dominated by the filamentous cyanobacterium Leptolyngbya sp. and the microalga Ochromonas (which contributed to the total photosynthetic population with rates of less than 5%), was studied under non-aseptic conditions for its efficiency to remove organic and inorganic compounds from different types of wastes/wastewaters while simultaneously producing lipids. Second cheese whey, poplar sawdust, and grass hydrolysates were used in lab-scale experiments, in photobioreactors that operated under aerobic conditions with different initial nutrient (C, N and P) concentrations. Nutrient removal rates, biomass productivity, and the maximum oil production rates were determined. The highest lipid production was achieved using the biologically treated dairy effluent (up to 14.8% oil in dry biomass corresponding to 124 mg L-1) which also led to high nutrient removal rates (up to 94%). Lipids synthesized by the microbial consortium contained high percentages of saturated and mono-unsaturated fatty acids (up to 75% in total lipids) for all the substrates tested, which implies that the produced biomass may be harnessed as a source of biodiesel.


Asunto(s)
Cianobacterias/química , Lípidos/química , Suero Lácteo/química , Biocombustibles , Biomasa , Microalgas , Consorcios Microbianos , Fotobiorreactores , Aguas Residuales
15.
Environ Pollut ; 233: 16-25, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29049942

RESUMEN

The application of the fungicide thiabendazole (TBZ) in fruit packaging plants (FPP) results in the production of effluents which are often disposed in adjacent field sites. These require remediation to prevent further environmental dispersal of TBZ. We assessed the bioaugmentation potential of a newly isolated TBZ-degrading bacterial consortium in a naturally contaminated soil (NCS) exhibiting a natural gradient of TBZ levels (12000, 400, 250 and 12 mg kg-1). The effect of aging on bioaugmentation efficacy was comparatively tested in a soil with similar physicochemical properties and soil microbiota, which was artificially, contaminated with the same TBZ levels (ACS). The impact of bioaugmentation and TBZ on the bacterial diversity in the NCS was explored via amplicon sequencing. Bioaugmentation effectively removed TBZ from both soils at levels up to 400 mg kg-1 but failed at the highest contamination level (12000 mg kg-1). Dissipation of TBZ in bioaugmented samples showed a concentration-dependent pattern, while aging of TBZ had a slight effect on bioaugmentation efficiency. Bioaugmentation had no impact on the soil bacterial diversity, in contrast to TBZ contamination. Soils from the hotspots of TBZ contamination (12000 mg kg-1) showed a drastically lower α-diversity driven by the dominance of ß- and γ-proteobacteria at the expense of all other bacterial phyla, especially Actinobacteria. Overall, bioaugmentation with specialized microbial inocula could be an effective solution for the recovery of disposal sites contaminated with persistent chemicals like TBZ.


Asunto(s)
Bacterias/crecimiento & desarrollo , Fungicidas Industriales/análisis , Microbiología del Suelo , Tiabendazol/análisis , Biodegradación Ambiental , Suelo/química , Contaminantes del Suelo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
16.
Microorganisms ; 5(2)2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28587211

RESUMEN

Microbes are considered to have a global distribution due to their high dispersal capabilities. However, our knowledge of the way geographically distant microbial communities assemble after dispersal in a new environment is limited. In this study, we examined whether communities would converge because similar taxa would be selected under the same environmental conditions, or would diverge because of initial community composition, after artificial dispersal. To this aim, a microcosm experiment was performed, in which the temporal changes in the composition and diversity of different prokaryoplankton assemblages from three distant geographic coastal areas (Banyuls-sur-Mer in northwest Mediterranean Sea, Pagasitikos Gulf in northeast Mediterranean and Woods Hole, MA, USA in the northwest Atlantic), were studied. Diversity was investigated using amplicon pyrosequencing of the V1-V3 hypervariable regions of the 16S rRNA. The three assemblages were grown separately in particle free and autoclaved Banyuls-sur-mer seawater at 18 °C in the dark. We found that the variability of prokaryoplankton community diversity (expressed as richness, evenness and dominance) as well as the composition were driven by patterns observed in Bacteria. Regarding community composition, similarities were found between treatments at family level. However, at the OTU level microbial communities from the three different original locations diverge rather than converge during incubation. It is suggested that slight differences in the composition of the initial prokaryoplankton communities, resulted in separate clusters the following days even when growth took place under identical abiotic conditions.

17.
Biol Rev Camb Philos Soc ; 92(2): 1011-1026, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27028628

RESUMEN

Global warming has revitalized interest in the relationship between body size and temperature, proposed by Bergmann's rule 150 years ago, one of the oldest manifestations of a 'biogeography of traits'. We review biogeographic evidence, results from clonal cultures and recent micro- and mesocosm experiments with naturally mixed phytoplankton communities regarding the response of phytoplankton body size to temperature, either as a single factor or in combination with other factors such as grazing, nutrient limitation, and ocean acidification. Where possible, we also focus on the comparison between intraspecific size shifts and size shifts resulting from changes in species composition. Taken together, biogeographic evidence, community-level experiments and single-species experiments indicate that phytoplankton average cell sizes tend to become smaller in warmer waters, although temperature is not necessarily the proximate environmental factor driving size shifts. Indirect effects via nutrient supply and grazing are important and often dominate. In a substantial proportion of field studies, resource availability is seen as the only factor of relevance. Interspecific size effects are greater than intraspecific effects. Direct temperature effects tend to be exacerbated by indirect ones, if warming leads to intensified nutrient limitation or copepod grazing while ocean acidification tends to counteract the temperature effect on cell size in non-calcifying phytoplankton. We discuss the implications of the temperature-related size trends in a global-warming context, based on known functional traits associated with phytoplankton size. These are a higher affinity for nutrients of smaller cells, highest maximal growth rates of moderately small phytoplankton (ca. 102 µm3 ), size-related sensitivities for different types of grazers, and impacts on sinking rates. For a phytoplankton community increasingly dominated by smaller algae we predict that: (i) a higher proportion of primary production will be respired within the microbial food web; (ii) a smaller share of primary production will be channeled to the classic phytoplankton - crustacean zooplankton - fish food chain, thus leading to decreased ecological efficiency from a fish-production point of view; (iii) a smaller share of primary production will be exported through sedimentation, thus leading to decreased efficiency of the biological carbon pump.


Asunto(s)
Organismos Acuáticos/citología , Organismos Acuáticos/fisiología , Fitoplancton/citología , Fitoplancton/fisiología , Animales , Tamaño de la Célula , Cadena Alimentaria , Calentamiento Global , Temperatura
18.
PeerJ ; 4: e1829, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27069786

RESUMEN

Mussel biofiltration is a widely used approach for the mitigation of aquaculture water. In this study, we investigated the effect of mussel biofiltration on the communities of particle-associated bacteria and unicellular eukaryotes in a sea bass aquaculture in southern North Sea. We assessed the planktonic community changes before and after biofiltration based on the diversity of the 16S and 18S rRNA genes by using next generation sequencing technologies. Although there was no overall reduction in the operational taxonomic units (OTU) numbers between the control (no mussels) and the test (with mussels) tanks, a clear reduction in the relative abundance of the top three most dominant OTUs in every sampling time was observed, ranging between 2-28% and 16-82% for Bacteria and Eukarya, respectively. The bacterial community was dominated by OTUs related to phytoplankton blooms and/or high concentrations of detritus. Among the eukaryotes, several fungal and parasitic groups were found. Their relative abundance in most cases was also reduced from the control to the test tanks; a similar decreasing pattern was also observed for both major higher taxa and functional (trophic) groups. Overall, this study showed the effectiveness of mussel biofiltration on the decrease of microbiota abundance and diversity in seawater fueling fish farms.

19.
PeerJ ; 4: e1610, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26819852

RESUMEN

The cyanobacterium Arthrospira is among the most well-known food supplements worldwide known as "Spirulina." While it is a widely recognized health-promoting natural product, there are no reports on the molecular diversity of commercially available brands of "Spirulina" supplements and the occurrence of other cyanobacterial and heterotrophic bacterial microorganisms in these products. In this study, 454-pyrosequencing analysis of the total bacterial occurrence in 31 brands of "Spirulina" dietary supplements from the Greek market was applied for the first time. In all samples, operational taxonomic units (OTUs) of Arthrospira platensis were the predominant cyanobacteria. Some products contained additional cyanobacterial OTUs including a few known potentially toxic taxa. Moreover, 469 OTUs were detected in all 31 products collectively, with most of them being related to the Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Verrucomicrobia. All samples included heterotrophic bacterial OTUs, ranging from 9-157 per product. Among the most common OTUs were ones closely related to taxa known for causing health issues (i.e., Pseudomonas, Flavobacterium, Vibrio, Aeromonas, Clostridium, Bacillus, Fusobacterium, Enterococcus). The observed high cyanobacterial and heterotrophic bacterial OTUs richness in the final product is a point for further research on the growth and processing of Arthrospira biomass for commercial purposes.

20.
FEMS Microbiol Ecol ; 91(7)2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26099964

RESUMEN

The spatial and temporal community composition of microzooplankton (dinoflagellates and ciliates) was assessed in the Kerguelen area (Southern Ocean) during the KEOPS2 cruise in early spring (October-November) 2011. This naturally iron-fertilized region was characterized by a complex mesoscale circulation resulting in a patchy distribution of phytoplankton blooms. Collectively, 97 morphospecies of dinoflagellates and ciliates belonging to 41 genera were identified by microscopy, and 202 Alveolata-related OTUs (operational taxonomical units) were retrieved with tag-pyrosequencing. Microscopy and pyrosequencing data were in accordance, in that diatom-consuming dinoflagellates were the most enhanced taxa in the blooms. Dinoflagellates also showed significant positive relationships with phytoplankton pigments, while no major differences were found in the ciliate abundances inside and outside the blooms. Cluster analysis showed clear differences in the phytoplankton and microzooplankton community structures between the iron-fertilized and HNLC (high nutrient low chlorophyll) waters, and between the blooms, concerning their location and the fertilization mechanisms. These results were combined with the rates of primary production and mesozooplankton consumption determined for the study area. The potential role of dinoflagellates and ciliates as phytoplankton consumers and as prey for mesozooplankton was then evaluated. Overall, heterotrophic dinoflagellates were probably the most important group of phytoplankton grazers, and a potential food source for copepods.


Asunto(s)
Cilióforos/clasificación , Dinoflagelados/clasificación , Hierro/metabolismo , Fitoplancton/clasificación , Zooplancton/clasificación , Animales , Clorofila , Cilióforos/genética , Diatomeas , Dinoflagelados/genética , Eutrofización , Océano Índico , Océanos y Mares , Fitoplancton/genética , Pigmentos Biológicos/análisis , Estaciones del Año , Zooplancton/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...