Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 198, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020414

RESUMEN

Pancreatic cancer (PC) is a clinically challenging tumor to combat due to its advanced stage at diagnosis as well as its resistance to currently available therapies. The absence of early symptoms and known detectable biomarkers renders this disease incredibly difficult to detect/manage. Recent advances in the understanding of PC biology have highlighted the importance of cancer-immune cell interactions, not only in the tumor micro-environment but also in distant systemic sites, like the bone marrow, spleen and circulating immune cells, the so-called macro-environment. The response of the macro-environment is emerging as a determining factor in tumor development by contributing to the formation of an increasingly immunogenic micro-environment promoting tumor homeostasis and progression. We will summarize the key events associated with the feedback loop between the tumor immune micro-environment (TIME) and the tumor immune macroenvironment (TIMaE) in pancreatic precancerous lesions along with how it regulates disease development and progression. In addition, liquid biopsy biomarkers capable of diagnosing PC at an early stage of onset will also be discussed. A clearer understanding of the early crosstalk between micro-environment and macro-environment could contribute to identifying new molecular therapeutic targets and biomarkers, consequently improving early PC diagnosis and treatment.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/metabolismo , Biomarcadores de Tumor/sangre , Lesiones Precancerosas/patología , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/sangre , Progresión de la Enfermedad
2.
Commun Chem ; 7(1): 60, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514757

RESUMEN

Despite progress in the prevention and diagnosis of cancer, current technologies for tumor detection present several limitations including invasiveness, toxicity, inaccuracy, lengthy testing duration and high cost. Therefore, innovative diagnostic techniques that integrate knowledge from biology, oncology, medicinal and analytical chemistry are now quickly emerging in the attempt to address these issues. Following this approach, here we developed a paper-based electrochemical device for detecting cancer-derived Small Extracellular Vesicles (S-EVs) in fluids. S-EVs were obtained from cancer cell lines known to express, at a different level, the αvß6 integrin receptor, a well-established hallmark of numerous epithelial cancer types. The resulting biosensor turned out to recognize αvß6-containing S-EVs down to a limit of 0.7*103 S-EVs/mL with a linear range up to 105 S-EVs /mL, and a relative standard deviation of 11%, thus it may represent a novel opportunity for αvß6 expressing cancers detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA