Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Discov Nano ; 19(1): 100, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861141

RESUMEN

In this work, we demonstrate that a simple argentometric titration is a scalable, fast, green and robust approach for producing AgCl/antibiotic hybrid antimicrobial materials. We titrated AgNO3 into tetracycline hydrochloride (TCH) aqueous solution, thus forming AgCl/TCH in a one-step procedure. Furthermore, we investigated the one-pot synthesis of triply synergistic super-nanoantimicrobials, combining an inorganic source of Ag+ ions (AgCl), a disinfecting agent (benzyl-dimethyl-hexadecyl-ammonium chloride, BAC) and a molecular antibiotic (tetracycline hydrochloride, TCH). Conventional antimicrobial tests, industrial biofilm detection protocols, and in situ IR-ATR microbial biofilm monitoring, have been adapted to understand the performance of the synthesized super-nanoantimicrobial. The resulting hybrid AgCl/BAC/TCH nanoantimicrobials are found to be synergistically active in eradicating Salmonella enterica and Lentilactobacillus parabuchneri bacteria and biofilms. This study paves the way for the development of a new class of super-efficient nanoantimicrobials that combine relatively low amounts of multiple active species into a single (nano)formulation, thus preventing the development of antimicrobial resistance towards a single active principle.

2.
Heliyon ; 10(3): e25260, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38327442

RESUMEN

This study explores how a simple argentometric titration-like approach could be evolved into a versatile, scalable, fast, and robust strategy for the production of AgCl/quaternary ammonium compounds (QACs) colloidal nanoantimicrobials (NAMs). These systems, which are green, stable, cost-effective, and reproducible are found to be effective against a wide range of food pathogenic bacteria and biofilms. The option of a large-scale production for such colloidal suspensions was explored via the use of a peristaltic pump. The utilization of various types of biosafe QACs and a wide range of solvents including aqueous and organic ones renders this system green and versatile. Nanocolloids (NCs) were characterized using UV-Vis, X-ray photoelectron and Fourier transform infrared (FTIR) spectroscopies. Their morphology and crystalline nature were investigated by transmission electron microscopy (TEM) and selected area diffraction pattern (SAED). Nanoparticle (NP) size distribution and hydrodynamic radius were measured by dynamic light scattering (DLS), while the ζ-potential was found to be highly positive, thus indicating significant colloidal stability and antimicrobial activity. In fact, the higher the NP surface charge, the stronger was their bioactivity. Furthermore, the antibacterial and antibiofilm effects of the as-prepared NCs were tested against Gram-positive bacteria, such as Staphylococcus aureus (ATCC 29213) and Listeria monocytogenes 46, and Gram-negative bacteria, such as Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). The results clearly indicate that AgCl/QACs provide pronounced antibiofilm activity with long-term bacteriostatic effects against foodborne pathogenic bacteria rendering them an ideal choice for active food packaging systems.

3.
J Colloid Interface Sci ; 660: 1030-1038, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220494

RESUMEN

HYPOTHESIS: Triblock copolymers of poly(ethylene oxide) and poly(propylene oxide)-based matrices, such as Poloxamer 407 (P407) or Pluronic® F127, are extensively utilized in drug delivery and permeation systems due to their FDA approval and listing in the US and European Pharmacopoeias. The study hypothesizes that incorporating 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and the celecoxib-HP-ß-CD inclusion complex into a 16 wt% P407 and chitosan blend in an aqueous acetic acid solution will affect the system's rheological and structural properties. EXPERIMENTS: Rheological, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) experiments were conducted to assess the impact of acetic acid and chitosan on the 16 wt% P407 and chitosan blend. Additionally, in vitro drug release studies were performed to monitor the drug release profile over time. FINDINGS: The addition of HP-ß-CD was found to inhibit gel formation in the 16 wt% P407 and chitosan blend. However, the presence of the celecoxib-HP-ß-CD inclusion complex showed no significant structural effects compared to P407 blended with chitosan alone. Rheological and SAXS analyses demonstrated that acetic acid led to the formation of a lamellar phase due to the lower pH, facilitating injectability. The presence of chitosan in acetic acid resulted in the detection of a hexagonal phase, affecting the release of celecoxib.


Asunto(s)
Quitosano , Polietilenglicoles , Glicoles de Propileno , 2-Hidroxipropil-beta-Ciclodextrina , Quitosano/química , Celecoxib , Liberación de Fármacos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Poloxámero/química , Acetatos
4.
Antibiotics (Basel) ; 12(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36830105

RESUMEN

Unlike other antimicrobial agents, Ag-based composites are stable and currently widely used as broad spectral additives, fighting microbial biofilms and other biological threats. The goal of the present study is to develop a green, multifunctional, and robust antibiofilm water-insoluble coating, inhibiting histamine-producing Lentilactobacillus parabuchneri biofilms. Herein, laser-ablated Ag NPs (L-Ag NPs) were incorporated into and onto a montmorillonite (MMT) surface layer with a simple wet chemical method, provided that the electrostatic interaction between L-Ag NPs and MMT clay led to the formation of L-Ag/MMT nanoantimicrobials (NAMs). The use of MMT support can facilitate handling Ag NPs in industrial applications. The Ag/MMT composite was characterized with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which confirmed the entrapment of L-Ag NPs into MMT clay. The surface chemical composition was assessed with X-ray photoelectron spectroscopy, proving that Ag NPs were in contact with and deposited onto the surface of MMT. The characteristic L-Ag/MMT band was investigated with UV-vis spectroscopy. Following that, the L-Ag/MMT composite was embedded into a biosafe water-insoluble beeswax agent with a spin coating technique. The antimicrobial ion release kinetic profile of the L-Ag/MMT/beeswax coating through an electrothermal atomic absorption spectroscopy (ETAAS) study supported the controlled release of Ag ions, reaching a plateau at 420 ± 80 nM, which is safe from the point of view of Ag toxicity. Microbial biofilm growth inhibition was assessed with real-time in situ Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) in a flow cell assembly over 32 h. The study was further supported by optical density (OD) measurements and SEM on bacteria incubated in the presence of the L-Ag/MMT/beeswax coating.

5.
ACS Meas Sci Au ; 2(6): 547-552, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36573077

RESUMEN

Measuring structural features of proteins dispersed in buffer solution, in contrast to crystal form, is indispensable in understanding morphological characteristics of the biomolecule in a native environment. We report on the structure and apparent viscosity of unfolded α and ß variants of SARS-CoV-2 spike proteins dispersed in buffer solutions. The radius of gyration of the ß variant is found to be larger than that of the α variant, while the ab initio computation of one of the possible particle-like bodies is consistent with the small-angle X-ray scattering (SAXS) profiles resembling a conformation similar to the three-dimensional structure of the folded state of the corresponding α and ß spike variant. However, a smaller radius of gyration with respect to the predicted folded state of 2.4 and 2.7 is observed for both α and ß variants, respectively. Our work complements the structural characterization of spike proteins using cryo-electron microscopy techniques. The measurement/analysis discussed here might be useful for quick and cost-effective evaluation of several protein structures, let alone mutated viral proteins, which is useful for drug discovery/development applications.

6.
Appl Environ Microbiol ; 88(17): e0099522, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35997493

RESUMEN

Mushroom-forming fungi (Agaricomycetes) employ enzymatic and nonenzymatic cellulose degradation mechanisms, the latter presumably relying on Fenton-generated radicals. The effects of the two mechanisms on the cellulose microfibrils structure remain poorly understood. We examined cellulose degradation caused by litter decomposers and wood decomposers, including brown-rot and white-rot fungi and one fungus with uncertain wood decay type, by combining small- and wide-angle X-ray scattering. We also examined the effects of commercial enzymes and Fenton-generated radicals on cellulose using the same method. We detected two main degradation or modification mechanisms. The first characterized the mechanism used by most fungi and resembled enzymatic cellulose degradation, causing simultaneous microfibril thinning and decreased crystalline cellulose. The second mechanism was detected in one brown-rot fungus and one litter decomposer and was characterized by patchy amorphogenesis of crystalline cellulose without substantial thinning of the fibers. This pattern did not resemble the effect of Fenton-generated radicals, suggesting a more complex mechanism is involved in the destruction of cellulose crystallinity by fungi. Furthermore, our results showed a mismatch between decay classifications and cellulose degradation patterns and that even within litter decomposers two degradation mechanisms were found, suggesting higher functional diversity under current ecological classifications of fungi. IMPORTANCE Cellulose degradation by fungi plays a fundamental role in terrestrial carbon cycling, but the mechanisms by which fungi cope with the crystallinity of cellulose are not fully understood. We used X-ray scattering to analyze how fungi, a commercial enzyme mix, and a Fenton reaction-generated radical alter the crystalline structure of cellulose. Our data revealed two mechanisms involved in crystalline cellulose degradation by fungi: one that results in the thinning of the cellulose fibers, resembling the enzymatic degradation of cellulose, and one that involves amorphogenesis of crystalline cellulose by yet-unknown pathways, resulting in a patchy-like degradation pattern. These results pave the way to a deeper understanding of cellulose degradation and the development of novel ways to utilize crystalline cellulose.


Asunto(s)
Agaricales , Basidiomycota , Agaricales/metabolismo , Basidiomycota/metabolismo , Celulosa/metabolismo , Hongos/metabolismo , Lignina/metabolismo , Microfibrillas/metabolismo , Madera/microbiología , Rayos X
7.
IUCrJ ; 9(Pt 4): 492-496, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35844479

RESUMEN

Here, a new accurate approach is presented to quantify the degree of crystallinity of regenerated cellulose textile fibers using wide-angle X-ray scattering. The approach is based on the observation that the contributions to the scattering from crystalline and amorphous domains of the fibers can be separated due to their different degree of orientation with respect to the fiber direction. The method is tested on Ioncell-F fibers, dry jet wet spun with different draw ratios from an ionic liquid solution. The analysis output includes, apart from an accurate estimate of the fiber crystallinity, the degrees of orientation of the cellulose nanocrystals and the cellulose chains in the amorphous domains.

8.
ACS Appl Bio Mater ; 5(7): 3230-3240, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35738566

RESUMEN

All over the world, one of the major challenges is the green synthesis of potential materials against antimicrobial resistance and viruses. This study demonstrates a simple method like chemistry lab titration to synthesize green, facile, scalable, reproducible, and stable synergistic silver chloride/benzyldimethylhexadecyl-ammonium chloride (AgCl/BAC) colloidal Nanoantimicrobials (NAMs). Nanocolloidal dispersions of AgCl in an aqueous medium are prepared by using silver nitrate (AgNO3) as precursor and BAC as both sources of chloride and stabilizer, holding an asymmetric molecular structure. The synthetic approach is scalable and green. Both the morphology and stability of AgCl/BAC nanocolloids (NCs) were investigated as a function of different molar fractions of the reagents. AgCl/BAC NCs were characterized by transmission electron microscopy (TEM) and X-ray photoelectron and UV-vis spectroscopies. Zeta potential measurements revealed increasing positive potential values at every stage of the synthesis. Size distribution and hydrodynamic diameter of the particles were measured by dynamic light scattering (DLS), which predicted the formation of BAC layered structures associated with the AgCl nanoparticles (NPs). Small-angle X-ray scattering (SAXS) experiments verify the thickness of the BAC bilayer around AgCl. The produced AgCl/BAC NCs probably have synergistic antimicrobial properties from the AgCl core and the biocide BAC shell. AgCl/BAC NCs stability over months was investigated. The experimental evidence supports the morphological stability of the AgCl/BAC NCs, while higher positive zeta potential values anticipate a long-term antimicrobial effect: a higher surface charge causes NPs to be potentially more lethal to bacteria. AgCl/BAC antimicrobial aqueous colloidal suspensions will be used as additives for the industrial production of antimicrobial coatings.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Nanopartículas del Metal/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
J Colloid Interface Sci ; 606(Pt 2): 1890-1896, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34689045

RESUMEN

HYPOTHESIS: Ferrihydrite (Fh) nanoparticles are receiving considerable scientific interest due to their large reactive surface areas, crystalline structures, and nanoparticle morphology. They are of great importance in biogeochemical processes and have the ability to sequester hazardous and toxic substances. Here, the working hypothesis was to entrap fractal-like Fh nanoparticles, with a radius of gyration of 6.2 nm and a primary building block of polydisperse spheres with a radius of 0.8 nm, in a shear-induced multilamellar vesicle (MLV) state using a 40 wt% polyethylene glycol dodecyl ether surfactant. EXPERIMENTS: Small- and Wide- Angle X-ray scattering revealed the equilibrium state of the non-ionic planar lamellar phase, the Fh dispersion, and their mixture. The MLV state was induced by using a shear flow in a Taylor-Couette geometry of a rheometer. FINDINGS: The nonionic surfactant initially exhibited a lamellar gel phase with two distinct d-spacings of 11.0 and 9.7 nm, which collapsed into the MLV state under shear flow. The Fh nanoparticles induced bilayer attraction by suppressing lamellar layer undulations, decreasing the d-spacing. These results are helpful in the understanding of the relationship between nanoparticle size and nanoparticle-bilayers interactions and provides insight on Fh encapsulations in a kinetically stable MLVs state.


Asunto(s)
Nanopartículas , Tensoactivos , Compuestos Férricos , Polímeros
10.
J Colloid Interface Sci ; 611: 224-234, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34952275

RESUMEN

HYPOTHESIS: Soluplus® is one of the most widely used amphiphilic copolymers in drug delivery and has been reported to strongly enhance the adsorption of model drugs. However, there is still a limited understanding of its micellar behavior as it responds to the different routes of administration, which involve important changes in concentration. EXPERIMENTS: The microstructure of Soluplus aqueous solutions has been investigated at a wide range of polymer concentrations (2 × 10-6 - 0.2 g/mL) by a combination of diffusion NMR (dNMR), small angle X-ray scattering (SAXS), static (SLS) dynamic (DLS) light scattering and viscosity measurements. These techniques have been coupled with surface tension measurements to frame the polymer's critical micellar concentration (cmc). FINDINGS: We demonstrate the presence at all tested concentrations of two forms of Soluplus, with hydrodynamic radii of 3 and 26 nm, where the fraction of smaller objects accounts for as much as 60-70%. dNMR, SAXS, DLS and SLS indicate that Soluplus spontaneously self-assembles into large spherical particles with a core-shell structure. However, self-assembly takes place three orders of magnitude above the cmc evaluated via surface tension measurements. Instead of the traditional cooperative micellization process, we propose a thermal-activated isodesmic self-assembly of the small aggregates into core-shell micelles.


Asunto(s)
Micelas , Polímeros , Polietilenglicoles , Polivinilos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
11.
Microorganisms ; 9(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374225

RESUMEN

The ectomycorrhizal fungus Paxillus involutus decomposes proteins using a two-step mechanism, including oxidation and proteolysis. Oxidation involves the action of extracellular hydroxyl radicals (•OH) generated by the Fenton reaction. This reaction requires the presence of iron(II). Here, we monitored the speciation of extracellular iron and the secretion of iron(III)-reducing metabolites during the decomposition of proteins by P. involutus. X-ray absorption spectroscopy showed that extracellular iron was mainly present as solid iron(III) phosphates and oxides. Within 1 to 2 days, these compounds were reductively dissolved, and iron(II) complexes were formed, which remained in the medium throughout the incubation. HPLC and mass spectrometry detected five extracellular iron(III)-reducing metabolites. Four of them were also secreted when the fungus grew on a medium containing ammonium as the sole nitrogen source. NMR identified the unique iron(III)-reductant as the diarylcyclopentenone involutin. Involutin was produced from day 2, just before the elevated •OH production, preceding the oxidation of BSA. The other, not yet fully characterized iron(III)-reductants likely participate in the rapid reduction and dissolution of solid iron(III) complexes observed on day one. The production of these metabolites is induced by other environmental cues than for involutin, suggesting that they play a role beyond the Fenton chemistry associated with protein oxidation.

12.
Sci Rep ; 10(1): 14552, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883964

RESUMEN

In this study, we present a combined small-angle neutron and X-ray scattering (SANS and SAXS) study of the nanoscale structure of cortical bone specimens from three different species. The variation of the scattering cross section of elements across the periodic table is very different for neutrons and X-rays. For X-rays, it is proportional to the electron density while for neutrons it varies irregularly with the atomic number. Hence, combining the two techniques on the same specimens allows for a more detailed interpretation of the scattering patterns as compared to a single-contrast experiment. The current study was performed on bovine, porcine and ovine specimens, obtained in two perpendicular directions with respect to the main axis of the bone (longitudinal and radial) in order to maximise the understanding of the nanostructural organisation. The specimens were also imaged with high resolution micro-computed tomography (micro-CT), yielding tissue mineral density and microstructural orientation as reference. We show that the SANS and SAXS patterns from the same specimen are effectively identical, suggesting that these bone specimens can be approximated as a two-component composite material. Hence, the observed small-angle scattering results mainly from the mineral-collagen contrast, apart from minor features associated with the internal collagen structure.


Asunto(s)
Hueso Cortical/diagnóstico por imagen , Nanoestructuras/química , Difracción de Rayos X/métodos , Animales , Bovinos , Hueso Cortical/química , Hueso Cortical/citología , Neutrones , Dispersión del Ángulo Pequeño , Ovinos , Porcinos , Microtomografía por Rayos X
13.
J Transl Med ; 18(1): 189, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375888

RESUMEN

BACKGROUND: The protective role of high HDL cholesterol levels against cardiovascular diseases has been recently questioned. Limited data are available on this specific topic in patients with type 2 diabetes mellitus (T2DM). We aimed to evaluate the association of HDL cholesterol concentrations with all-cause and cause-specific mortality in a historical cohort of T2DM patients with 14 years of follow-up. METHODS: This is a retrospective population-based cohort study involving 2113 T2DM patients attending the Diabetic Clinic of Asti. Survival analyses were performed to assess hazard ratios for overall and specific-cause mortality by HDL cholesterol tertiles, using the middle HDL cholesterol tertile as a reference. RESULTS: The mean age was 66 ± 11 years; 51.4% of patients had low HDL-cholesterol levels. After a 14-year follow-up, 973/2112 patients had died (46.1%). The HDL cholesterol tertile cut-off points were 37.5 and 47.5 mg/dL (males) and 41.5 and 52.0 mg/dL (females). No associations between lower and upper HDL cholesterol tertiles respectively and all-cause (HR = 1.12; 95% CI 0.96-1.32; HR = 1.11; 0.95-1.30), cardiovascular (HR = 0.97; 0.77-1.23; HR = 0.94; 0.75-1.18) or cancer (HR = 0.92; 0.67-1.25; HR = 0.89; 0.66-1.21) mortality were found. A significantly increased risk for infectious disease death was found both in the lower (HR = 2.62; 1.44-4.74) and the upper HDL-cholesterol tertiles (HR = 2.05; 1.09-3.85) when compared to the reference. Individuals in the upper tertile showed an increased risk for mortality due to diabetes-related causes (HR = 1.87; 1.10-3.15). CONCLUSIONS: Our results corroborate the hypothesis that HDL cholesterol levels are nonprotective in T2DM patients. The U-shaped association between HDL-cholesterol levels and mortality associated with infectious diseases should be verified by further studies.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Anciano , Causas de Muerte , HDL-Colesterol , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo
14.
G Ital Cardiol (Rome) ; 21(4 Suppl 1): 3S-21S, 2020 04.
Artículo en Italiano | MEDLINE | ID: mdl-32202541

RESUMEN

High levels of LDL cholesterol (LDL-C) represent a causal factor for cardiovascular diseases on an atherosclerotic basis, with a direct correlation between these and mortality or cardiovascular events, such that the reduction of both is associated proportionally and linearly with the reduction of LDL-C.Statins and ezetimibe are used for LDL-C lowering but may not be sufficient to achieve the targets defined by the ESC/EAS guidelines, which recommend use of PCSK9 inhibitors for further LDL-C reduction in patients not at goal.This project submitted 86 clinical scenarios to a group of experts, cardiologists, internists and lipidologists, collecting their opinion on the appropriateness of different behaviors and decisions. We used the RAND/UCLA method of assessing the appropriateness of clinical interventions, validated to combine the best scientific evidence available with expert judgment. To this end, the benefit-risk ratio was evaluated in the proposed clinical scenarios. Each indication was classified as "appropriate", "uncertain" or "inappropriate" based on the average score given by the participants.This document presents the results of a consensus process that led to the development of recommendations for the management of clinical scenarios on the treatment of patients with dyslipidemia, which cannot always be solved with scientific evidence alone.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Enfermedades Cardiovasculares , Hipercolesterolemia/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/prevención & control , LDL-Colesterol , Consenso , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Italia , Medición de Riesgo , Factores de Riesgo
15.
Soft Matter ; 16(11): 2642-2651, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32119019

RESUMEN

We report here on a peptide hydrogel system, which in contrast to most other such systems, is made up of relatively short fibrillar aggregates, discussing resemblance with colloidal rods. The synthetic model peptides A8K and A10K, where A denotes alanine and K lysine, self-assemble in aqueous solutions into ribbon-like aggregates having an average length 〈L〉 on the order of 100 nm and with a diameter d≈ 6 nm. The aggregates can be seen as weakly charged rigid rods and they undergo an isotropic to nematic phase transition at higher concentrations. Translational motion perpendicular to the rod axis gets strongly hindered when the concentration is increased above the overlap concentration. Similarly, the rotational motion is hindered, leading to very long stress relaxation times. The peptide self-assembly is driven by hydrophobic interactions and due to a net peptide charge the system is colloidally stable. However, at the same time short range, presumably hydrophobic, attractive interactions appear to affect the rheology of the system. Upon screening the long range electrostatic repulsion, with the addition of salt, the hydrophobic attraction becomes more dominant and we observe a transition from a repulsive glassy state to an attractive gel-state of the rod-like peptide aggregates.


Asunto(s)
Hidrogeles/química , Péptidos/química , Termodinámica , Agua/química , Alanina/química , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/química , Modelos Biológicos , Reología
16.
ISME J ; 14(4): 896-905, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31896790

RESUMEN

Filamentous fungi play a key role as decomposers in Earth's nutrient cycles. In soils, substrates are heterogeneously distributed in microenvironments. Hence, individual hyphae of a mycelium may experience very different environmental conditions simultaneously. In the current work, we investigated how fungi cope with local environmental variations at single-cell level. We developed a method based on infrared spectroscopy that allows the direct, in-situ chemical imaging of the decomposition activity of individual hyphal tips. Colonies of the ectomycorrhizal Basidiomycete Paxillus involutus were grown on liquid media, while parts of colonies were allowed to colonize lignin patches. Oxidative decomposition of lignin by individual hyphae growing under different conditions was followed for a period of seven days. We identified two sub-populations of hyphal tips: one with low decomposition activity and one with much higher activity. Active cells secreted more extracellular polymeric substances and oxidized lignin more strongly. The ratio of active to inactive hyphae strongly depended on the environmental conditions in lignin patches, but was further mediated by the decomposition activity of entire mycelia. Phenotypic heterogeneity occurring between genetically identical hyphal tips may be an important strategy for filamentous fungi to cope with heterogeneous and constantly changing soil environments.


Asunto(s)
Hongos/fisiología , Agaricales , Basidiomycota/fisiología , Microbiología Ambiental , Hifa , Micelio/fisiología , Micorrizas/fisiología , Nutrientes , Suelo/química
17.
J Geophys Res Biogeosci ; 125(4): e2019JG005517, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33842182

RESUMEN

Riverine colloids are important carriers of macronutrients, trace metals, and pollutants into marine waters. The aim of the current study was to extend the understanding of iron (Fe) and organic carbon (OC) colloids in boreal rivers and their fate at higher salinities. X-ray absorbance spectroscopy (XAS) and dynamic light scattering (DLS) were combined to explore Fe speciation and colloidal characteristics such as size and surface charge and how these are affected at increasing salinity. XAS confirmed the presence of two Fe phases in the river waters-Fe-organic matter (OM) complexes and Fe(oxy)hydroxides. From DLS measurements on filtered and unfiltered samples, three particle size distributions were identified. The smallest particles (10-40 nm) were positively charged and suggested to consist of essentially bare Fe(oxy)hydroxide nanoparticles. The largest particles (300-900 nm) were dominated by Fe(oxy)hydroxides associated with chromophoric molecular matter. An intermediate size distribution (100-200 nm) with a negative surface charge was presumably dominated by OM and containing Fe-OM complexes. Increasing the salinity resulted in a removal of the smallest distribution. Unexpectedly, both the intermediate and largest size distributions were still detected at high salinity. The collective results suggest that Fe(oxy)hydroxides and Fe-OM complexes are both found across the wide size range studied and that colloidal size does not necessarily reflect either Fe speciation or stability toward salinity-induced aggregation. The findings further demonstrate that also particles beyond the typically studied <0.45-µm size range should be considered to fully understand the riverine transport and fate of macronutrients, trace metals, and pollutants.

18.
Front Physiol ; 11: 592117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391013

RESUMEN

Amyloids are implicated in many diseases, and disruption of lipid membrane structures is considered as one possible mechanism of pathology. In this paper we investigate interactions between an aggregating peptide and phospholipid membranes, focusing on the nanometer-scale structures of the aggregates formed, as well as on the effect on the aggregation process. As a model system, we use the small amyloid-forming peptide named NACore, which is a fragment of the central region of the protein α-synuclein that is associated with Parkinson's disease. We find that phospholipid vesicles readily associate with the amyloid fibril network in the form of highly distorted and trapped vesicles that also may wet the surface of the fibrils. This effect is most pronounced for model lipid systems containing only zwitterionic lipids. Fibrillation is found to be retarded by the presence of the vesicles. At the resolution of our measurements, which are based mainly on cryogenic transmission electron microscopy (cryo-TEM), X-ray scattering, and circular dichroism (CD) spectroscopy, we find that the resulting aggregates can be well fitted as linear combinations of peptide fibrils and phospholipid bilayers. There are no detectable effects on the cross-ß packing of the peptide molecules in the fibrils, or on the thickness of the phospholipid bilayers. This suggests that while the peptide fibrils and lipid bilayers readily co-assemble on large length-scales, most of them still retain their separate structural identities on molecular length-scales. Comparison between this relatively simple model system and other amyloid systems might help distinguish aspects of amyloid-lipid interactions that are generic from aspects that are more protein specific. Finally, we briefly consider possible implications of the obtained results for in-vivo amyloid toxicity.

19.
Langmuir ; 35(11): 3999-4010, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30789270

RESUMEN

Poly(ethylene glycol) (PEG) polymers and PEG-conjugated lipids are widely used in bioengineering and drug transport applications. A PEG layer in a drug carrier increases hydrophilic repulsion, inhibits membrane fusion and serum opsonin interactions, and prolongs the storage and circulation time. It can also change the carrier shape and have an influence on many properties related to the content release of the carrier. In this paper, we focus on the physicochemical effects of PEGylation in the lipid bilayer. We introduce laurdanC as a fluorophore for shape recognition and phase transition detection. Together with laurdanC, cryogenic transmission electron microscopy, differential scanning calorimetry, molecular dynamics simulations, and small-angle X-ray scattering/wide-angle X-ray scattering, we acquire information of the particle/bilayer morphology and phase behavior in systems containing 1,2-dipalmitoyl- sn-glycero-3-phosphocholine:1,2-distearoyl- sn-glycero-3-phosphoethanolamine-PEG(2000) with different fractions. We find that PEGylation leads to two important and potentially usable features of the system. (1) Spherical vesicles present a window of elevated chain-melting temperatures and (2) lipid packing shape-controlled liposome-to-bicelle transition. The first finding is significant for targets requiring multiple release sequences and the second enables tuning the release by composition and the PEG polymer length. Besides drug delivery systems, the findings can be used in other smart soft materials with trigger-polymers as well.

20.
Int J Mol Sci ; 19(10)2018 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-30249049

RESUMEN

Numerous bioactive biophenol secoiridoids (BPsecos) are found in the fruit, leaves, and oil of olives. These BPsecos play important roles in both the taste of food and human health. The main BPseco bioactive from green olive fruits, leaves, and table olives is oleuropein, while olive oil is rich in oleuropein downstream pathway molecules. The aim of this study was to probe olive BPseco downstream molecular pathways that are alike in biological and olive processing systems at different pHs and reaction times. The downstream molecular pathway were analyzed by high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI/MS) and typed neglected of different overlap (TNDO) computational methods. Our study showed oleuropein highest occupied molecular orbital (HOMO) and HOMO-1 triggered the free radical processes, while HOMO-2 and lowest unoccupied molecular orbital (LUMO) were polar reactions of glucoside and ester groups. Olive BPsecos were found to be stable under acid and base catalylic experiments. Oleuropein aglycone opened to diales and rearranged to hydroxytyrosil-elenolate under strong reaction conditions. The results suggest that competition among olive BPseco HOMOs could induce glucoside hydrolysis during olive milling due to native olive ß-glucosidases. The underlined olive BPsecos downstream molecular mechanism herein could provide new insights into the olive milling process to improve BPseco bioactives in olive oil and table olives, which would enhance both the functional food and the nutraceuticals that are produced from olives.


Asunto(s)
Manipulación de Alimentos/métodos , Glucósidos/metabolismo , Iridoides/química , Iridoides/metabolismo , Olea/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...