Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Science ; 383(6681): 426-432, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271520

RESUMEN

Anthropogenic organic carbon emissions reporting has been largely limited to subsets of chemically speciated volatile organic compounds. However, new aircraft-based measurements revealed total gas-phase organic carbon emissions that exceed oil sands industry-reported values by 1900% to over 6300%, the bulk of which was due to unaccounted-for intermediate-volatility and semivolatile organic compounds. Measured facility-wide emissions represented approximately 1% of extracted petroleum, resulting in total organic carbon emissions equivalent to that from all other sources across Canada combined. These real-world observations demonstrate total organic carbon measurements as a means of detecting unknown or underreported carbon emissions regardless of chemical features. Because reporting gaps may include hazardous, reactive, or secondary air pollutants, fully constraining the impact of anthropogenic emissions necessitates routine, comprehensive total organic carbon monitoring as an inherent check on mass closure.

2.
Environ Sci Technol ; 57(48): 20034-20042, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37931038

RESUMEN

Asphalt is ubiquitous across cities and a source of organic compounds spanning a wide range of volatility and may be an overlooked source of urban organic aerosols. The emission rate and composition depend strongly on temperature, but emissions have been observed at both application temperatures and surface temperatures during warm sunny days. Here we report primary organic aerosol (POA) emissions and secondary organic aerosol (SOA) production from asphalt. We reheated real-world asphalt samples to application-relevant temperatures (∼130 °C) and typical summertime road-surface temperatures (∼55 °C) and then flushed the emitted vapors into an environmental oxidation chamber containing ammonium sulfate seed particles. SOA was then formed following the photo-oxidation of emissions under high-NOx conditions typical of urban atmospheres. We find that POA only forms at application temperature as it does not require further oxidation, whereas SOA forms under both conditions; with the resulting POA and SOA both being semi-volatile. While total OA formation rates were substantially greater under the limited time spent under application conditions, SOA formation from passive asphalt heating presents a potential long-term source, as heating continues for the lifetime of the road surface. This suggests that persistent asphalt solar heating is likely a considerable and continued source of summertime SOA in urban environments.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos/análisis , Hidrocarburos , Aerosoles/análisis
3.
Atmos Environ (1994) ; 3102023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37901719

RESUMEN

Low-cost air quality monitors are growing in popularity among both researchers and community members to understand variability in pollutant concentrations. Several studies have produced calibration approaches for these sensors for ambient air. These calibrations have been shown to depend primarily on relative humidity, particle size distribution, and particle composition, which may be different in indoor environments. However, despite the fact that most people spend the majority of their time indoors, little is known about the accuracy of commonly used devices indoors. This stems from the fact that calibration data for sensors operating in indoor environments are rare. In this study, we sought to evaluate the accuracy of the raw data from PurpleAir fine particulate matter monitors and for published calibration approaches that vary in complexity, ranging from simply applying linear corrections to those requiring co-locating a filter sample for correction with a gravimetric concentration during a baseline visit. Our data includes PurpleAir devices that were co-located in each home with a gravimetric sample for 1-week periods (265 samples from 151 homes). Weekly-averaged gravimetric concentrations ranged between the limit of detection (3 µg/m3) and 330 µg/m3. We found a strong correlation between the PurpleAir monitor and the gravimetric concentration (R>0.91) using internal calibrations provided by the manufacturer. However, the PurpleAir data substantially overestimated indoor concentrations compared to the gravimetric concentration (mean bias error ≥ 23.6 µg/m3 using internal calibrations provided by the manufacturer). Calibrations based on ambient air data maintained high correlations (R ≥ 0.92) and substantially reduced bias (e.g. mean bias error = 10.1 µg/m3 using a US-wide calibration approach). Using a gravimetric sample from a baseline visit to calibrate data for later visits led to an improvement over the internal calibrations, but performed worse than the simpler calibration approaches based on ambient air pollution data. Furthermore, calibrations based on ambient air pollution data performed best when weekly-averaged concentrations did not exceed 30 µg/m3, likely because the majority of the data used to train these models were below this concentration.

4.
Environ Sci Technol ; 57(38): 14150-14161, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37699525

RESUMEN

Exposure to ambient fine particulate matter (PM2.5) is associated with millions of premature deaths annually. Oxidative stress through overproduction of reactive oxygen species (ROS) is a possible mechanism for PM2.5-induced health effects. Organic aerosol (OA) is a dominant component of PM2.5 worldwide, yet its role in PM2.5 toxicity is poorly understood due to its chemical complexity. Here, through integrated cellular ROS measurements and detailed multi-instrument chemical characterization of PM in urban southeastern United States, we show that oxygenated OA (OOA), especially more-oxidized OOA, is the main OA type associated with cellular ROS production. We further reveal that highly unsaturated species containing carbon-oxygen double bonds and aromatic rings in OOA are major contributors to cellular ROS production. These results highlight the key chemical features of ambient OA driving its toxicity. As more-oxidized OOA is ubiquitous and abundant in the atmosphere, this emphasizes the need to understand its sources and chemical processing when formulating effective strategies to mitigate PM2.5 health impacts.


Asunto(s)
Estrés Oxidativo , Oxígeno , Especies Reactivas de Oxígeno , Aerosoles , Sudeste de Estados Unidos
5.
Atmos Meas Tech ; 16(1): 169-179, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323467

RESUMEN

Low-cost sensors are often co-located with reference instruments to assess their performance and establish calibration equations, but limited discussion has focused on whether the duration of this calibration period can be optimized. We placed a multipollutant monitor that contained sensors that measure particulate matter smaller than 2.5 µm (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and nitric oxide (NO) at a reference field site for one year. We developed calibration equations using randomly selected co-location subsets spanning 1 to 180 consecutive days out of the 1-year period and compared the potential root mean square errors (RMSE) and Pearson correlation coefficients (r). The co-located calibration period required to obtain consistent results varied by sensor type, and several factors increased the co-location duration required for accurate calibration, including the response of a sensor to environmental factors, such as temperature or relative humidity (RH), or cross-sensitivities to other pollutants. Using measurements from Baltimore, MD, where a broad range of environmental conditions may be observed over a given year, we found diminishing improvements in the median RMSE for calibration periods longer than about six weeks for all the sensors. The best performing calibration periods were the ones that contained a range of environmental conditions similar to those encountered during the evaluation period (i.e., all other days of the year not used in the calibration). With optimal, varying conditions it was possible to obtain an accurate calibration in as little as one week for all sensors, suggesting that co-location can be minimized if the period is strategically selected and monitored so that the calibration period is representative of the desired measurement setting.

6.
Environ Sci Technol ; 57(26): 9683-9692, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37327457

RESUMEN

Air quality policies have made substantial gains by reducing pollutant emissions from the transportation sector. In March 2020, New York City's activities were severely curtailed in response to the COVID-19 pandemic, resulting in 60-90% reductions in human activity. We continuously measured major volatile organic compounds (VOCs) during January-April 2020 and 2021 in Manhattan. Concentrations of many VOCs decreased significantly during the shutdown with variations in daily patterns reflective of human activity perturbations, resulting in a temporary ∼28% reduction in chemical reactivity. However, the limited effect of these dramatic measures was outweighed by larger increases in VOC-related reactivity during the anomalously warm spring 2021. This emphasizes the diminishing returns from transportation-focused policies alone and the risk of increased temperature-dependent emissions undermining policy-related gains in a warming climate.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Pandemias , COVID-19/epidemiología , Contaminación del Aire/análisis , Estaciones del Año , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Emisiones de Vehículos/análisis
7.
Environ Sci Atmos ; 3(4): 683-694, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37063944

RESUMEN

Low-cost sensors enable finer-scale spatiotemporal measurements within the existing methane (CH4) monitoring infrastructure and could help cities mitigate CH4 emissions to meet their climate goals. While initial studies of low-cost CH4 sensors have shown potential for effective CH4 measurement at ambient concentrations, sensor deployment remains limited due to questions about interferences and calibration across environments and seasons. This study evaluates sensor performance across seasons with specific attention paid to the sensor's understudied carbon monoxide (CO) interferences and environmental dependencies through long-term ambient co-location in an urban environment. The sensor was first evaluated in a laboratory using chamber calibration and co-location experiments, and then in the field through two 8 week co-locations with a reference CH4 instrument. In the laboratory, the sensor was sensitive to CH4 concentrations below ambient background concentrations. Different sensor units responded similarly to changing CH4, CO, temperature, and humidity conditions but required individual calibrations to account for differences in sensor response factors. When deployed in-field, co-located with a reference instrument near Baltimore, MD, the sensor captured diurnal trends in hourly CH4 concentration after corrections for temperature, absolute humidity, CO concentration, and hour of day. Variable performance was observed across seasons with the sensor performing well (R 2 = 0.65; percent bias 3.12%; RMSE 0.10 ppm) in the winter validation period and less accurately (R 2 = 0.12; percent bias 3.01%; RMSE 0.08 ppm) in the summer validation period where there was less dynamic range in CH4 concentrations. The results highlight the utility of sensor deployment in more variable ambient CH4 conditions and demonstrate the importance of accounting for temperature and humidity dependencies as well as co-located CO concentrations with low-cost CH4 measurements. We show this can be addressed via Multiple Linear Regression (MLR) models accounting for key covariates to enable urban measurements in areas with CH4 enhancement. Together with individualized calibration prior to deployment, the sensor shows promise for use in low-cost sensor networks and represents a valuable supplement to existing monitoring strategies to identify CH4 hotspots.

8.
Ann Appl Stat ; 17(4): 3056-3087, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38646662

RESUMEN

Low-cost air pollution sensors, offering hyper-local characterization of pollutant concentrations, are becoming increasingly prevalent in environmental and public health research. However, low-cost air pollution data can be noisy, biased by environmental conditions, and usually need to be field-calibrated by collocating low-cost sensors with reference-grade instruments. We show, theoretically and empirically, that the common procedure of regression-based calibration using collocated data systematically underestimates high air pollution concentrations, which are critical to diagnose from a health perspective. Current calibration practices also often fail to utilize the spatial correlation in pollutant concentrations. We propose a novel spatial filtering approach to collocation-based calibration of low-cost networks that mitigates the underestimation issue by using an inverse regression. The inverse-regression also allows for incorporating spatial correlations by a second-stage model for the true pollutant concentrations using a conditional Gaussian Process. Our approach works with one or more collocated sites in the network and is dynamic, leveraging spatial correlation with the latest available reference data. Through extensive simulations, we demonstrate how the spatial filtering substantially improves estimation of pollutant concentrations, and measures peak concentrations with greater accuracy. We apply the methodology for calibration of a low-cost PM2.5 network in Baltimore, Maryland, and diagnose air pollution peaks that are missed by the regression-calibration.

9.
Atmos Chem Phys ; 23(20): 13469-13483, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-38516559

RESUMEN

Mobile sources are responsible for a substantial controllable portion of the reactive organic carbon (ROC) emitted to the atmosphere, especially in urban environments of the United States. We update existing methods for calculating mobile source organic particle and vapor emissions in the United States with over a decade of laboratory data that parameterize the volatility and organic aerosol (OA) potential of emissions from on-road vehicles, nonroad engines, aircraft, marine vessels, and locomotives. We find that existing emission factor information from Teflon filters combined with quartz filters collapses into simple relationships and can be used to reconstruct the complete volatility distribution of ROC emissions. This new approach consists of source-specific filter artifact corrections and state-of-the-science speciation including explicit intermediate-volatility organic compounds (IVOCs), yielding the first bottom-up volatility-resolved inventory of US mobile source emissions. Using the Community Multiscale Air Quality model, we estimate mobile sources account for 20 %-25 % of the IVOC concentrations and 4.4 %-21.4 % of ambient OA. The updated emissions and air quality model reduce biases in predicting fine-particle organic carbon in winter, spring, and autumn throughout the United States (4.3 %-11.3 % reduction in normalized bias). We identify key uncertain parameters that align with current state-of-the-art research measurement challenges.

10.
Atmos Chem Phys ; 22(21): 14377-14399, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36506646

RESUMEN

Volatile chemical products (VCPs) and other non-combustion-related sources have become important for urban air quality, and bottom-up calculations report emissions of a variety of functionalized compounds that remain understudied and uncertain in emissions estimates. Using a new instrumental configuration, we present online measurements of oxygenated organic compounds in a U.S. megacity over a 10-day wintertime sampling period, when biogenic sources and photochemistry were less active. Measurements were conducted at a rooftop observatory in upper Manhattan, New York City, USA using a Vocus chemical ionization time-of-flight mass spectrometer with ammonium (NH4 +) as the reagent ion operating at 1 Hz. The range of observations spanned volatile, intermediate-volatility, and semi-volatile organic compounds with targeted analyses of ~150 ions whose likely assignments included a range of functionalized compound classes such as glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters, ethanolamines, and ketones that are found in various consumer, commercial, and industrial products. Their concentrations varied as a function of wind direction with enhancements over the highly-populated areas of the Bronx, Manhattan, and parts of New Jersey, and included abundant concentrations of acetates, acrylates, ethylene glycol, and other commonly-used oxygenated compounds. The results provide top-down constraints on wintertime emissions of these oxygenated/functionalized compounds with ratios to common anthropogenic marker compounds, and comparisons of their relative abundances to two regionally-resolved emissions inventories used in urban air quality models.

11.
J Expo Sci Environ Epidemiol ; 32(6): 908-916, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352094

RESUMEN

BACKGROUND: Low-cost sensor networks for monitoring air pollution are an effective tool for expanding spatial resolution beyond the capabilities of existing state and federal reference monitoring stations. However, low-cost sensor data commonly exhibit non-linear biases with respect to environmental conditions that cannot be captured by linear models, therefore requiring extensive lab calibration. Further, these calibration models traditionally produce point estimates or uniform variance predictions which limits their downstream in exposure assessment. OBJECTIVE: Build direct field-calibration models using probabilistic gradient boosted decision trees (GBDT) that eliminate the need for resource-intensive lab calibration and that can be used to conduct probabilistic exposure assessments on the neighborhood level. METHODS: Using data from Plantower A003 particulate matter (PM) sensors deployed in Baltimore, MD from November 2018 through November 2019, a fully probabilistic NGBoost GBDT was trained on raw data from sensors co-located with a federal reference monitoring station and compared against linear regression trained on lab calibrated sensor data. The NGBoost predictions were then used in a Monte Carlo interpolation process to generate high spatial resolution probabilistic exposure gradients across Baltimore. RESULTS: We demonstrate that direct field-calibration of the raw PM2.5 sensor data using a probabilistic GBDT has improved point and distribution accuracies compared to the linear model, particularly at reference measurements exceeding 25 µg/m3, and also on monitors not included in the training set. SIGNIFICANCE: We provide a framework for utilizing the GBDT to conduct probabilistic spatial assessments of human exposure with inverse distance weighting that predicts the probability of a given location exceeding an exposure threshold and provides percentiles of exposure. These probabilistic spatial exposure assessments can be scaled by time and space with minimal modifications. Here, we used the probabilistic exposure assessment methodology to create high quality spatial-temporal PM2.5 maps on the neighborhood-scale in Baltimore, MD. IMPACT STATEMENT: We demonstrate how the use of open-source probabilistic machine learning models for in-place sensor calibration outperforms traditional linear models and does not require an initial laboratory calibration step. Further, these probabilistic models can create uniquely probabilistic spatial exposure assessments following a Monte Carlo interpolation process.


Asunto(s)
Contaminación del Aire , Humanos , Baltimore
12.
ACS ES T Eng ; 2(5): 780-793, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35937506

RESUMEN

As part of our low-cost sensor network, we colocated multipollutant monitors containing sensors for particulate matter, carbon monoxide, ozone, nitrogen dioxide, and nitrogen monoxide at a reference field site in Baltimore, MD, for 1 year. The first 6 months were used for training multiple regression models, and the second 6 months were used to evaluate the models. The models produced accurate hourly concentrations for all sensors except ozone, which likely requires nonlinear methods to capture peak summer concentrations. The models for all five pollutants produced high Pearson correlation coefficients (r > 0.85), and the hourly averaged calibrated sensor and reference concentrations from the evaluation period were within 3-12%. Each sensor required a distinct set of predictors to achieve the lowest possible root-mean-square error (RMSE). All five sensors responded to environmental factors, and three sensors exhibited cross-sensitives to another air pollutant. We compared the RMSE from models (NO2, O3, and NO) that used colocated regulatory instruments and colocated sensors as predictors to address the cross-sensitivities to another gas, and the corresponding model RMSEs for the three gas models were all within 0.5 ppb. This indicates that low-cost sensor networks can yield useable data if the monitoring package is designed to comeasure key predictors. This is key for the utilization of low-cost sensors by diverse audiences since this does not require continual access to regulatory grade instruments.

13.
Environ Sci Technol ; 56(8): 4806-4815, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35394777

RESUMEN

Volatile chemical products (VCPs) have recently been identified as potentially important unconventional sources of secondary organic aerosol (SOA), in part due to the mitigation of conventional emissions such as vehicle exhaust. Here, we report measurements of SOA production in an oxidation flow reactor from a series of common VCPs containing oxygenated functional groups and at least one oxygen within the molecular backbone. These include two oxygenated aromatic species (phenoxyethanol and 1-phenoxy-2-propanol), two esters (butyl butyrate and butyl acetate), and four glycol ethers (carbitol, methyl carbitol, butyl carbitol, and hexyl carbitol). We measured gas- and particle-phase products with a suite of mass spectrometers and particle-sizing instruments. Only the aromatic VCPs produce SOA with substantial yields. For the acyclic VCPs, ether and ester functionality promotes fragmentation and hinders autoxidation, whereas aromatic rings drive SOA formation in spite of the presence of ether groups. Therefore, our results suggest that a potential strategy to reduce urban SOA from VCPs would be to reformulate consumer products to include less oxygenated aromatic compounds.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/química , Contaminantes Atmosféricos/análisis , Éter , Compuestos Orgánicos/química , Emisiones de Vehículos/análisis
14.
Sensors (Basel) ; 22(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35408382

RESUMEN

The concentration of fine particulate matter (PM2.5) is known to vary spatially across a city landscape. Current networks of regulatory air quality monitoring are too sparse to capture these intra-city variations. In this study, we developed a low-cost (60 USD) portable PM2.5 monitor called Smart-P, for use on bicycles, with the goal of mapping street-level variations in PM2.5 concentration. The Smart-P is compact in size (85 × 85 × 42 mm) and light in weight (147 g). Data communication and geolocation are achieved with the cyclist's smartphone with the help of a user-friendly app. Good agreement was observed between the Smart-P monitors and a regulatory-grade monitor (mean bias error: −3.0 to 1.5 µg m−3 for the four monitors tested) in ambient conditions with relative humidity ranging from 38 to 100%. Monitor performance decreased in humidity > 70% condition. The measurement precision, represented as coefficient of variation, was 6 to 9% in stationary mode and 6% in biking mode across the four tested monitors. Street tests in a city with low background PM2.5 concentrations (8 to 9 µg m−3) and in two cities with high background concentrations (41 to 74 µg m−3) showed that the Smart-P was capable of observing local emission hotspots and that its measurement was not sensitive to bicycle speed. The low-cost and user-friendly nature are two features that make the Smart-P a good choice for empowering citizen scientists to participate in local air quality monitoring.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis
15.
Sci Adv ; 7(34)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34417173

RESUMEN

Intensive building energy efficiency improvements can reduce emissions from energy use, improving outdoor air quality and human health, but may also affect ventilation and indoor air quality. This study examines the effects of highly ambitious, yet feasible, building energy efficiency upgrades in the United States. Our energy efficiency scenarios, derived from the literature, lead to a 6 to 11% reduction in carbon dioxide emissions and 18 to 25% reductions in particulate matter (PM2.5) emissions in 2050. These reductions are complementary with a carbon pricing policy on electricity. However, our results also point to the importance of mitigating indoor PM2.5 emissions, improving PM2.5 filtration, and evaluating ventilation-related policies. Even with no further ventilation improvements, we estimate that intensive energy efficiency scenarios could prevent 1800 to 3600 premature deaths per year across the United States in 2050. With further investments in indoor air quality, this can rise to 2900 to 5100.

16.
Environ Sci Technol ; 55(15): 10255-10267, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34270218

RESUMEN

Detailed offline speciation of gas- and particle-phase organic compounds was conducted using gas/liquid chromatography with traditional and high-resolution mass spectrometers in a hybrid targeted/nontargeted analysis. Observations were focused on an unoccupied home and were compared to two other indoor sites. Observed gas-phase organic compounds span the volatile to semivolatile range, while functionalized organic aerosols extend from intermediate volatility to ultra-low volatility, including a mix of oxygen, nitrogen, and sulfur-containing species. Total gas-phase abundances of hydrocarbon and oxygenated gas-phase complex mixtures were elevated indoors and strongly correlated in the unoccupied home. While gas-phase concentrations of individual compounds generally decreased slightly with greater ventilation, their elevated ratios relative to controlled emissions of tracer species suggest that the dilution of gas-phase concentrations increases off-gassing from surfaces and other indoor reservoirs, with volatility-dependent responses to dynamically changing environmental factors. Indoor-outdoor emissions of gas-phase intermediate-volatility/semivolatile organic hydrocarbons from the unoccupied home averaged 6-11 mg h-1, doubling with ventilation. While the largest single-compound emissions observed were furfural (61-275 mg h-1) and acetic acid, observations spanned a wide range of individual volatile chemical products (e.g., terpenoids, glycol ethers, phthalates, other oxygenates), highlighting the abundance of long-lived reservoirs resulting from prior indoor use or materials, and their gradual transport outdoors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis
17.
Atmos Meas Tech ; 14(2): 995-1013, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35529304

RESUMEN

The distribution and dynamics of atmospheric pollutants are spatiotemporally heterogeneous due to variability in emissions, transport, chemistry, and deposition. To understand these processes at high spatiotemporal resolution and their implications for air quality and personal exposure, we present custom, low-cost air quality monitors that measure concentrations of contaminants relevant to human health and climate, including gases (e.g., O3, NO, NO2, CO, CO2, CH4, and SO2) and size-resolved (0.3-10 µm) particulate matter. The devices transmit sensor data and location via cellular communications and are capable of providing concentration data down to second-level temporal resolution. We produce two models: one designed for stationary (or mobile platform) operation and a wearable, portable model for directly measuring personal exposure in the breathing zone. To address persistent problems with sensor drift and environmental sensitivities (e.g., relative humidity and temperature), we present the first online calibration system designed specifically for low-cost air quality sensors to calibrate zero and span concentrations at hourly to weekly intervals. Monitors are tested and validated in a number of environments across multiple outdoor and indoor sites in New Haven, CT; Baltimore, MD; and New York City. The evaluated pollutants (O3, NO2, NO, CO, CO2, and PM2.5) performed well against reference instrumentation (e.g., r = 0.66-0.98) in urban field evaluations with fast e-folding response times (≤1 min), making them suitable for both large-scale network deployments and smaller-scale targeted experiments at a wide range of temporal resolutions. We also provide a discussion of best practices on monitor design, construction, systematic testing, and deployment.

18.
Sci Total Environ ; 762: 144190, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33360468

RESUMEN

This commentary is intended to provide a research roadmap for utilizing recent chemical and molecular-biological technological advances for addressing dampness and mold in buildings. The perspective is unique in that both the mold industry practitioners and academic researchers drive the questions. Research needs were derived from a 2018 international workshop attended by practitioners, researchers and governmental representatives, where challenges and opportunities in the mold remediation and restoration field were discussed focusing on the need to develop new tools that improve building diagnosis and clearance certification for mold inspectors and remediators. Suggestions are made on how new technologies surrounding DNA-based sequence analysis for fungal and bacterial identification and real-time chemical sensor technology can be leveraged by practitioners to improve inspection and remediation. The workshop put into effect a logical progression to distill and extract practice-based implications and encourage the process of transfer of the science to practice. Goals for the workshop, and this subsequent paper, are also centered on encouraging US government-funding agencies to better position and define research on the built environment geared for end-user scientists and practitioners to better explore practical solutions to dampness and mold in indoor environments. By facilitating the workshop forum and targeting industry, field practitioners, and government agencies, a sharing of needed commonalities may be infused into future research agendas and outreach efforts.


Asunto(s)
Contaminación del Aire Interior , Hongos
19.
J Expo Sci Environ Epidemiol ; 31(6): 943-952, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32764709

RESUMEN

BACKGROUND: The COVID-19 pandemic has presented an acute shortage of regulation-tested masks. Many of the alternatives available to hospitals have not been certified, leaving uncertainty about their ability to properly protect healthcare workers from SARS-CoV-2 transmission. OBJECTIVE: For situations where regulatory methods are not accessible, we present experimental methods to evaluate mask filtration and breathability quickly via cost-effective approaches (e.g., ~$2000 USD) that could be replicated in communities of need without extensive infrastructure. We demonstrate the need for screening by evaluating an existing diverse inventory of masks/respirators from a local hospital. METHODS: Two experimental approaches are presented to examine both aerosol filtration and flow impedance (i.e., breathability). For one of the approaches ("quick assessment"), screening for appropriate filtration could be performed under 10 min per mask, on average. Mask fit tests were conducted in tandem but are not the focus of this study. RESULTS: Tests conducted of 47 nonregulation masks reveal variable performance. A number of commercially available masks in hospital inventories perform similarly to N95 masks for aerosol filtration of 0.2 µm and above, but there is a range of masks with relatively lower filtration efficiencies (e.g., <90%) and a subset with poorer filtration (e.g., <70%). All masks functioned acceptably for breathability, and impedance was not correlated with filtration efficiency. SIGNIFICANCE: With simplified tests, organizations with mask/respirator shortages and uncertain inventories can make informed decisions about use and procurement.


Asunto(s)
COVID-19 , Dispositivos de Protección Respiratoria , Aerosoles , Filtración , Humanos , Máscaras , Pandemias , SARS-CoV-2 , Ventiladores Mecánicos
20.
Sci Adv ; 6(36)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32917599

RESUMEN

Asphalt-based materials are abundant and a major nontraditional source of reactive organic compounds in urban areas, but their emissions are essentially absent from inventories. At typical temperature and solar conditions simulating different life cycle stages (i.e., storage, paving, and use), common road and roofing asphalts produced complex mixtures of organic compounds, including hazardous pollutants. Chemically speciated emission factors using high-resolution mass spectrometry reveal considerable oxygen and reduced sulfur content and the predominance of aromatic (~30%) and intermediate/semivolatile organic compounds (~85%), which together produce high overall secondary organic aerosol (SOA) yields. Emissions rose markedly with moderate solar exposure (e.g., 300% for road asphalt) with greater SOA yields and sustained SOA production. On urban scales, annual estimates of asphalt-related SOA precursor emissions exceed those from motor vehicles and substantially increase existing estimates from noncombustion sources. Yet, their emissions and impacts will be concentrated during the hottest, sunniest periods with greater photochemical activity and SOA production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...