Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 10: CD013232, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37811631

RESUMEN

BACKGROUND: Free oxygen radicals have been implicated in the pathogenesis of bronchopulmonary dysplasia (BPD) in preterm infants. Superoxide dismutase (SOD) is a naturally occurring enzyme which provides a defense against such oxidant injury. Providing supplementary SOD has been tested in clinical trials to prevent BPD in preterm infants. OBJECTIVES: To determine the efficacy and safety of SOD in the prevention and treatment of BPD on mortality and other complications of prematurity in infants at risk for, or having BPD. SEARCH METHODS: We searched CENTRAL, PubMed, Embase, and three trials registers on 22 September 2022 together with reference checking, citation searching and contact with study authors to identify additional studies. SELECTION CRITERIA: Randomized, quasi-randomized and cluster-randomized controlled trials (RCTs) where the participants were preterm infants who had developed, or were at risk of developing BPD, and who were randomly allocated to receive either SOD (in any form, by any route, any dose, anytime) or placebo, or no treatment. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were BPD defined as an oxygen requirement at 28 days, BPD defined as oxygen at 36 weeks' postmenstrual age, neonatal mortality, mortality prior to discharge, and BPD or death at 36 weeks' postmenstrual age. We reported risk ratio (RR) and risk difference (RD) with 95% confidence intervals (CIs) for the dichotomous outcomes. We used GRADE to assess certainty of evidence for each outcome. MAIN RESULTS: We included three RCTs (380 infants) on SOD administration in preterm infants at risk for BPD, and no studies in preterm infants with evolving BPD / early respiratory insufficiency. The evidence is very uncertain about the effect of SOD on BPD defined as an oxygen requirement at 28 days (RR 1.09, 95% CI 0.94 to 1.26; RD 0.06, 95% CI -0.05 to 0.16, 1 study, 302 infants; I2 for RR and RD not applicable), BPD defined as oxygen at 36 weeks' postmenstrual age (RR 0.96, 95% CI 0.72 to 1.29; RD -0.01, 95% CI -0.11 to 0.09, 2 studies, 335 infants; I2 for RR and RD = 0%), neonatal mortality (RR 0.98, 95% CI 0.57 to 1.68; RD -0.00, 95% CI -0.08 to 0.07, 2 studies, 335 infants; I2 for RR and RD = 0%), and mortality prior to discharge (RR 1.20, 95% CI 0.53 to 2.71; RD 0.04, 95% CI -0.14 to 0.23, 2 studies, 78 infants; I2 for RR and RD = 0%). No studies reported BPD or death at 36 weeks' postmenstrual age. The evidence is very uncertain about the effect of SOD on retinopathy of prematurity any stage (RR 0.95, 95% CI 0.78 to 1.15; RD -0.03, 95% CI -0.15 to 0.08, 2 studies, 335 infants; I2for RR = 0%, I2 for RD = 8%), and severe retinopathy of prematurity (ROP) (RR 0.97, 95% CI 0.57 to 1.65; RD -0.01, 95% CI -0.10 to 0.09, 1 study, 244 infants; I2 for RR and RD not applicable). No studies reported moderate to severe neurodevelopmental outcome at 18 to 24 months. Certainty of evidence was very low for all outcomes. We identified no ongoing trials. AUTHORS' CONCLUSIONS: The evidence is very uncertain about the effect of SOD on BPD defined as an oxygen requirement at 28 days, BPD defined as oxygen at 36 weeks' postmenstrual age, neonatal mortality and mortality prior to discharge compared to placebo. No studies reported BPD or death at 36 weeks' postmenstrual age and need for supplemental oxygen. The evidence is very uncertain about the effect of SOD on retinopathy of prematurity any stage and severe retinopathy of prematurity. No studies reported moderate to severe neurodevelopmental outcome at 18 to 24 months. The effects of SOD in preterm infants has not been reported in any trial in the last few decades, considering that the most recent trial on SOD in preterm infants was conducted in 1997/1998, and no new studies are ongoing. In the light of the limited available evidence, new data from preclinical and observational studies are needed to justify the conduction of new RCTs. Observational studies might report how SOD is administered, including indication, dose and association with relevant outcomes such as mortality, BPD and long-term neurodevelopment.


Asunto(s)
Displasia Broncopulmonar , Retinopatía de la Prematuridad , Recién Nacido , Lactante , Humanos , Retinopatía de la Prematuridad/prevención & control , Displasia Broncopulmonar/prevención & control , Recien Nacido Prematuro , Oxígeno , Superóxido Dismutasa/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
mBio ; 8(6)2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184019

RESUMEN

Human gut Bacteroides species produce different types of toxins that antagonize closely related members of the gut microbiota. Some are toxic effectors delivered by type VI secretion systems, and others are non-contact-dependent secreted antimicrobial proteins. Many strains of Bacteroides fragilis secrete antimicrobial molecules, but only one of these toxins has been described to date (Bacteroidales secreted antimicrobial protein 1 [BSAP-1]). In this study, we describe a novel secreted protein produced by B. fragilis strain 638R that mediated intraspecies antagonism. Using transposon mutagenesis and deletion mutation, we identified a gene encoding a eukaryotic-like ubiquitin protein (BfUbb) necessary for toxin activity against a subset of B. fragilis strains. The addition of ubb into a heterologous background strain conferred toxic activity on that strain. We found this gene to be one of the most highly expressed in the B. fragilis genome. The mature protein is 84% similar to human ubiquitin but has an N-terminal signal peptidase I (SpI) signal sequence and is secreted extracellularly. We found that the mature 76-amino-acid synthetic protein has very potent activity, confirming that BfUbb mediates the activity. Analyses of human gut metagenomic data sets revealed that ubb is present in 12% of the metagenomes that have evidence of B. fragilis As 638R produces both BSAP-1 and BfUbb, we performed a comprehensive analysis of the toxin activity of BSAP-1 and BfUbb against a set of 40 B. fragilis strains, revealing that 75% of B. fragilis strains are targeted by one or the other of these two secreted proteins of strain 638R.IMPORTANCE We are just beginning to understand some of the important interactions that occur between microbes of the human gut microbiota that dictate the composition and abundance of its constituent members. The ability of one member to produce molecules that directly kill a coresident member has been shown among minor gut species and is just starting to be studied in the abundant Bacteroides species. Here, we show that some strains of Bacteroides fragilis have acquired a gene encoding a secreted eukaryotic-like ubiquitin protein with potent inhibitory activity against other B. fragilis stains. This is the first bacterially encoded ubiquitin-like molecule shown to function like a bacterial toxin. This molecule is an example of a gut symbiont acquiring and adapting a eukaryotic molecule likely to increase its competitiveness in the mammalian gut. Understanding antagonistic factors produced by abundant gut symbionts is an important prerequisite to properly engineer strains to colonize the gut for health benefits.


Asunto(s)
Antibacterianos/metabolismo , Antibiosis , Proteínas Bacterianas/metabolismo , Bacteroides fragilis/fisiología , Ubiquitina/metabolismo , Proteínas Bacterianas/genética , Bacteroides fragilis/crecimiento & desarrollo , Bacteroides fragilis/metabolismo , Elementos Transponibles de ADN , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Eliminación de Gen , Humanos , Metagenómica , Microbiota , Mutagénesis Insercional , Ubiquitina/genética
3.
mBio ; 7(4)2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27555309

RESUMEN

UNLABELLED: We recently showed that human gut Bacteroidales species secrete antimicrobial proteins (BSAPs), and we characterized in vitro the first such BSAP produced by Bacteroides fragilis In this study, we identified a second potent BSAP produced by the ubiquitous and abundant human gut species Bacteroides uniformis The two BSAPs contain a membrane attack complex/perforin (MACPF) domain but share very little sequence similarity. We identified the target molecules of BSAP-sensitive cells and showed that each BSAP targets a different class of surface molecule: BSAP-1 targets an outer membrane protein of sensitive B. fragilis strains, and BSAP-2 targets the O-antigen glycan of lipopolysaccharide (LPS) of sensitive B. uniformis strains. Species-wide genomic and phenotypic analyses of B. fragilis and B. uniformis showed that BSAP-producing strains circumvent killing by synthesizing an orthologous nontargeted surface molecule. The BSAP genes are adjacent to the gene(s) encoding their target replacements, suggesting coacquisition. Using a gnotobiotic mouse competitive-colonization model, we found that the BSAP surface targets are important for colonization of the mammalian gut, thereby explaining why they are maintained in sensitive strains and why they were replaced rather than deleted in BSAP-producing strains. Using isogenic BSAP-producing, -sensitive, and -resistant strains, we show that a BSAP-producing strain outcompetes a sensitive strain but not a resistant strain in the mammalian gut. Human gut metagenomic datasets reveal that BSAP-1-sensitive strains do not cooccur with BSAP-1-producing strains in human gut microbiotas, further supporting the idea that BSAPs are important competitive factors with relevance to the strain-level composition of the human gut microbiota. IMPORTANCE: We know relatively little about the ecology of the human intestinal microbiota and the combination of factors that dictate which strains and species occupy an individual's gut microbial community. Interference competition, mediated by bacterial factors that directly harm other members, is beginning to be appreciated as important in contributing to species- and strain-level dynamics of abundant gut bacteria. Here, we show that gut Bacteroidales secrete antimicrobial proteins (BSAPs) that antagonize strains of the same species. We show that BSAPs target molecules of sensitive cells that are important for gut colonization and therefore are maintained in sensitive cells. In an experimental animal model of gut colonization, a BSAP-1-producing strain antagonized and outcompeted an isogenic sensitive strain. Furthermore, metagenomic analyses showed that BSAP-1-producing and -sensitive strains are not found together in human gut microbiotas. These data suggest that BSAPs are strong ecological drivers shaping the strain-level composition of gut communities.


Asunto(s)
Antiinfecciosos/metabolismo , Antibiosis , Proteínas Bacterianas/metabolismo , Bacteroides/fisiología , Tracto Gastrointestinal/microbiología , Animales , Proteínas Bacterianas/genética , Bacteroides/crecimiento & desarrollo , Bacteroides/metabolismo , Infecciones por Bacteroides/microbiología , Modelos Animales de Enfermedad , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...