Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 13(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36676996

RESUMEN

Alternaria leaf blight, caused by the fungus Alternaria dauci, is the most damaging foliar disease of carrot. Some carrot genotypes exhibit partial resistance to this pathogen and resistance Quantitative Trait Loci (rQTL) have been identified. Co-localization of metabolic QTL and rQTL identified camphene, α-pinene, α-bisabolene, ß-cubebene, caryophyllene, germacrene D and α-humulene as terpenes potentially involved in carrot resistance against ALB. By combining genomic and transcriptomic analyses, we identified, under the co-localization regions, terpene-related genes which are differentially expressed between a resistant and a susceptible carrot genotype. These genes include five terpene synthases and twenty transcription factors. In addition, significant mycelial growth inhibition was observed in the presence of α-humulene and caryophyllene.

2.
Molecules ; 27(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500459

RESUMEN

Phenylpropanoids and flavonoids are specialized metabolites frequently reported as involved in plant defense to biotic or abiotic stresses. Their biosynthetic accumulation may be constitutive and/or induced in response to external stimuli. They may participate in plant signaling driving plant defense responses, act as a physical or chemical barrier to prevent invasion, or as a direct toxic weapon against microbial or insect targets. Their protective action is described as the combinatory effect of their localization during the host's interaction with aggressors, their sustained availability, and the predominance of specific compounds or synergy with others. Their biosynthesis and regulation are partly deciphered; however, a lot of gaps in knowledge remain to be filled. Their mode of action on microorganisms and insects probably arises from an interference with important cellular machineries and structures, yet this is not fully understood for all type of pests and pathogens. We present here an overview of advances in the state of the art for both phenylpropanoids and flavonoids with the objective of paving the way for plant breeders looking for natural sources of resistance to improve plant varieties. Examples are provided for all types of microorganisms and insects that are targeted in crop protection. For this purpose, fields of phytopathology, phytochemistry, and human health were explored.


Asunto(s)
Flavonoides , Plantas , Animales , Humanos , Flavonoides/farmacología , Flavonoides/metabolismo , Plantas/metabolismo , Insectos/fisiología , Estrés Fisiológico , Enfermedades de las Plantas/prevención & control
3.
PLoS One ; 16(4): e0249613, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33798246

RESUMEN

Renewed consumer demand motivates the nutritional and sensory quality improvement of fruits and vegetables. Specialized metabolites being largely involved in nutritional and sensory quality of carrot, a better knowledge of their phenotypic variability is required. A metabolomic approach was used to evaluate phenotypic plasticity level of carrot commercial varieties, over three years and a wide range of cropping environments spread over several geographical areas in France. Seven groups of metabolites have been quantified by HPLC or GC methods: sugars, carotenoids, terpenes, phenolic compounds, phenylpropanoids and polyacetylenes. A large variation in root metabolic profiles was observed, in relation with environment, variety and variety by environment interaction effects in decreasing order of importance. Our results show a clear diversity structuration based on metabolite content. Polyacetylenes, ß-pinene and α-carotene were identified mostly as relatively stable varietal markers, exhibiting static stability. Nevertheless, environment effect was substantial for a large part of carrot metabolic profile and various levels of phenotypic plasticity were observed depending on metabolites and varieties. A strong difference of environmental sensitivity between varieties was observed for several compounds, particularly myristicin, 6MM and D-germacrene, known to be involved in responses to biotic and abiotic stress. This work provides useful information about plasticity in the perspective of carrot breeding and production. A balance between constitutive content and environmental sensitivity for key metabolites should be reached for quality improvement in carrot and other vegetables.


Asunto(s)
Adaptación Fisiológica , Carotenoides/análisis , Daucus carota/metabolismo , Resistencia a la Enfermedad/inmunología , Metaboloma , Daucus carota/crecimiento & desarrollo , Daucus carota/inmunología
4.
Nutrients ; 13(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918417

RESUMEN

Epidemiological studies have shown that carrot consumption may be associated with a lower risk of developing several metabolic dysfunctions. Our group previously determined that the Bolero (Bo) carrot variety exhibited vascular and hepatic tropism using cellular models of cardiometabolic diseases. The present study evaluated the potential metabolic and cardiovascular protective effect of Bo, grown under two conditions (standard and biotic stress conditions (BoBS)), in apolipoprotein E-knockout (ApoE-/-) mice fed with high fat diet (HFD). Effects on metabolic/hemodynamic parameters and on atherosclerotic lesions have been assessed. Both Bo and BoBS decreased plasma triglyceride and expression levels of genes implicated in hepatic de novo lipogenesis and lipid oxidation. BoBS supplementation decreased body weight gain, secretion of very-low-density lipoprotein, and increased cecal propionate content. Interestingly, Bo and BoBS supplementation improved hemodynamic parameters by decreasing systolic, diastolic, and mean blood pressure. Moreover, Bo improved cardiac output. Finally, Bo and BoBS substantially reduced the aortic root lesion area. These results showed that Bo and BoBS enriched diets corrected most of the metabolic and cardiovascular disorders in an atherosclerosis-prone genetic mouse model and may therefore represent an interesting nutritional approach for the prevention of cardiovascular diseases.


Asunto(s)
Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/prevención & control , Daucus carota , Suplementos Dietéticos , Placa Aterosclerótica/terapia , Animales , Aorta/patología , Apolipoproteínas E/deficiencia , Gasto Cardíaco , Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares/genética , Ciego/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Peroxidación de Lípido , Lipogénesis , Lipoproteínas VLDL/sangre , Ratones , Ratones Noqueados , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Propionatos/metabolismo , Triglicéridos/sangre , Aumento de Peso
5.
Nutrients ; 12(2)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012793

RESUMEN

Carrots' genotype and growing conditions influence their potential properties to fight against cardiovascular and metabolic diseases. The present study evaluated the influence of carrot genotypes contrasted by root color (Bolero, Presto, Karotan, Deep Purple, Kintoki and Blanche des Vosges) growing under standard, water-restricted, biotic stress (Alternaria dauci inoculation), and combined stress conditions (water restriction and A.dauci inoculation). The effect of carrots' polyphenol and carotenoid content was assessed on endothelial and smooth muscle cells, hepatocytes, adipocytes and macrophages functions (oxidative stress, apoptosis, proliferation, lipid accumulation and inflammation). Independently of varieties or growing conditions, all carrot extracts affected vascular cells' oxidative stress and apoptosis, and metabolic cells' oxidative stress and lipid accumulation. Three clusters were revealed and displayed beneficial properties mostly for adipocytes function, smooth muscle cells and hepatocytes, and endothelial cells and hepatocytes, respectively. Karotan and Presto varieties exhibited endothelial tropism while Blanche des Vosges targeted adipocytes. Carrots under biotic stress are more efficient in inducing beneficial effects, with the Bolero variety being the most effective. However, extracts from carrots which grew under combined stress conditions had limited beneficial effects. This report underscores the use of certain carrot extracts as potential effective nutraceutical supplements for metabolic diseases.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Daucus carota/genética , Genotipo , Pigmentación , Extractos Vegetales/farmacología , Raíces de Plantas/química , Animales , Células Cultivadas , Daucus carota/crecimiento & desarrollo , Daucus carota/metabolismo , Humanos , Ratones , Extractos Vegetales/química
6.
Planta ; 245(4): 737-747, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27999990

RESUMEN

Main conclusion Variations in gene expression can partially explain the difference of carotenoid accumulation in secondary phloem and xylem of fleshy carrot roots. The carrot root is well divided into two different tissues separated by vascular cambium: the secondary phloem and xylem. The equilibrium between these two tissues represents an important issue for carrot quality, but the knowledge about the respective carotenoid accumulation is sparse. The aim of this work was (i) to investigate if variation in carotenoid biosynthesis gene expression could explain differences in carotenoid content in phloem and xylem tissues and (ii) to investigate if this regulation is differentially modulated in the respective tissues by water-restricted growing conditions. In this work, five carrot genotypes contrasting by their root color were studied in control and water-restricted conditions. Carotenoid content and the relative expression of 13 genes along the carotenoid biosynthesis pathway were measured in the respective tissues. Results showed that in orange genotypes and the purple one, carotenoid content was higher in phloem compared to xylem. For the red one, no differences were observed. Moreover, in control condition, variations in gene expression explained the different carotenoid accumulations in both tissues, while in water-restricted condition, no clear association between gene expression pattern and variations in carotenoid content could be detected except in orange-rooted genotypes. This work shows that the structural aspect of carrot root is more important for carotenoid accumulation in relation with gene expression levels than the consequences of expression changes upon water restriction.


Asunto(s)
Carotenoides/fisiología , Daucus carota/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Raíces de Plantas/fisiología , Carotenoides/análisis , Carotenoides/metabolismo , Daucus carota/crecimiento & desarrollo , Immunoblotting , Floema/fisiología , Raíces de Plantas/química , Xilema/fisiología
7.
Plant Cell ; 28(11): 2735-2754, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27956585

RESUMEN

The preservation of our genetic resources and production of high-quality seeds depends on their ability to remain viable and vigorous during storage. In a quantitative trait locus analysis on seed longevity in Medicago truncatula, we identified the bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5). Characterization of Mt-abi5 insertion mutant seeds revealed that both the acquisition of longevity and dormancy were severely impaired. Using transcriptomes of developing Mt-abi5 seeds, we created a gene coexpression network and revealed ABI5 as a regulator of gene modules with functions related to raffinose family oligosaccharide (RFO) metabolism, late embryogenesis abundant (LEA) proteins, and photosynthesis-associated nuclear genes (PhANGs). Lower RFO contents in Mt-abi5 seeds were linked to the regulation of SEED IMBIBITION PROTEIN1 Proteomic analysis confirmed that a set of LEA polypeptides was reduced in mature Mt-abi5 seeds, whereas the absence of repression of PhANG in mature Mt-abi5 seeds was accompanied by chlorophyll and carotenoid retention. This resulted in a stress response in Mt-abi5 seeds, evident from an increase in α-tocopherol and upregulation of genes related to programmed cell death and protein folding. Characterization of abi5 mutants in a second legume species, pea (Pisum sativum), confirmed a role for ABI5 in the regulation of longevity, seed degreening, and RFO accumulation, identifying ABI5 as a prominent regulator of late seed maturation in legumes.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/fisiología , Pisum sativum/metabolismo , Pisum sativum/fisiología , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Semillas/fisiología , Factores de Transcripción/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Medicago truncatula/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Semillas/genética , Factores de Transcripción/genética
8.
J Agric Food Chem ; 64(4): 906-12, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26752004

RESUMEN

Carotenoids are important secondary metabolites involved in plant growth and nutritional quality of vegetable crops. These pigments are highly accumulated in carrot root, but knowledge about the impact of environmental factors on their accumulation is limited. The purpose of this work was to investigate the impact of environmental variations on carotenoid accumulation in carrot leaves and roots. In this work, carrots were grown during two contrasting periods to maximize bioclimatic differences. In leaves, carotenoid and chlorophyll contents were lower in the less favorable growing conditions, whereas relative contents were well conserved for all genotypes, suggesting a common regulatory mechanism. The down-regulation of all genes under environmental constraints demonstrates that carotenoid accumulation is regulated at the transcriptional level. In roots, the decrease in α-carotene and lutein contents was accompanied by an increase of ß-carotene relative content. At the transcriptional level, LCYB and ZEP expression increased, whereas LCYE expression decreased, in the less favorable conditions, suggesting that carotenoid biosynthesis is switched toward the ß-branch.


Asunto(s)
Clorofila/metabolismo , Daucus carota/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , beta Caroteno/metabolismo , Clorofila/análisis , Daucus carota/química , Daucus carota/genética , Daucus carota/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , beta Caroteno/análisis
9.
PLoS One ; 10(1): e0116674, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25614987

RESUMEN

Accumulated in large amounts in carrot, carotenoids are an important product quality attribute and therefore a major breeding trait. However, the knowledge of carotenoid accumulation genetic control in this root vegetable is still limited. In order to identify the genetic variants linked to this character, we performed an association mapping study with a candidate gene approach. We developed an original unstructured population with a broad genetic basis to avoid the pitfall of false positive detection due to population stratification. We genotyped 109 SNPs located in 17 candidate genes ­ mostly carotenoid biosynthesis genes ­ on 380 individuals, and tested the association with carotenoid contents and color components. Total carotenoids and ß-carotene contents were significantly associated with genes zeaxanthin epoxydase (ZEP), phytoene desaturase (PDS) and carotenoid isomerase (CRTISO) while α-carotene was associated with CRTISO and plastid terminal oxidase (PTOX) genes. Color components were associated most significantly with ZEP. Our results suggest the involvement of the couple PDS/PTOX and ZEP in carotenoid accumulation, as the result of the metabolic and catabolic activities respectively. This study brings new insights in the understanding of the carotenoid pathway in non-photosynthetic organs.


Asunto(s)
Carotenoides/biosíntesis , Daucus carota/química , Daucus carota/enzimología , Proteínas de Plantas/genética , Vías Biosintéticas , Carotenoides/análisis , Daucus carota/anatomía & histología , Daucus carota/genética , Estudios de Asociación Genética , Oxidorreductasas/genética , Raíces de Plantas/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Polimorfismo de Nucleótido Simple , cis-trans-Isomerasas/genética
10.
Plant Cell ; 26(5): 2223-2233, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24858934

RESUMEN

The typically intense carotenoid accumulation in cultivated orange-rooted carrots (Daucus carota) is determined by a high protein abundance of the rate-limiting enzyme for carotenoid biosynthesis, phytoene synthase (PSY), as compared with white-rooted cultivars. However, in contrast to other carotenoid accumulating systems, orange carrots are characterized by unusually high levels of α-carotene in addition to ß-carotene. We found similarly increased α-carotene levels in leaves of orange carrots compared with white-rooted cultivars. This has also been observed in the Arabidopsis thaliana lut5 mutant carrying a defective carotene hydroxylase CYP97A3 gene. In fact, overexpression of CYP97A3 in orange carrots restored leaf carotenoid patterns almost to those found in white-rooted cultivars and strongly reduced α-carotene levels in the roots. Unexpectedly, this was accompanied by a 30 to 50% reduction in total root carotenoids and correlated with reduced PSY protein levels while PSY expression was unchanged. This suggests a negative feedback emerging from carotenoid metabolites determining PSY protein levels and, thus, total carotenoid flux. Furthermore, we identified a deficient CYP97A3 allele containing a frame-shift insertion in orange carrots. Association mapping analysis using a large carrot population revealed a significant association of this polymorphism with both α-carotene content and the α-/ß-carotene ratio and explained a large proportion of the observed variation in carrots.

11.
C R Biol ; 337(5): 352-9, 2014 May.
Artículo en Francés | MEDLINE | ID: mdl-24841963

RESUMEN

To increase the germplasm necessary for varietal improvement of tuberous-rooted chervil, a food apiaceae of increasing importance, two successive surveys of wild populations were carried out in Germany, in the Rhine and the Weser River basins. These mainly riparian populations are likely to be shaped by changes in hydrographic networks that characterize their habitat. Molecular studies have shown a strong structuration between wild populations (GST∼32%), but did not reveal any structuring effect of the hydrographic network on diversity or any global phenomenon of genetic erosion. A discussion about the strategy for maintaining the diversity of this species on a long-term period is proposed.


Asunto(s)
Apiaceae/genética , Evolución Biológica , Conservación de los Recursos Naturales , Variación Genética , Geografía , Alemania , Población , Semillas
12.
PLoS One ; 8(8): e70801, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940644

RESUMEN

BACKGROUND: Carrot is a vegetable cultivated worldwide for the consumption of its root. Historical data indicate that root colour has been differentially selected over time and according to geographical areas. Root pigmentation depends on the relative proportion of different carotenoids for the white, yellow, orange and red types but only internally for the purple one. The genetic control for root carotenoid content might be partially associated with carotenoid biosynthetic genes. Carotenoid isomerase (CRTISO) has emerged as a regulatory step in the carotenoid biosynthesis pathway and could be a good candidate to show how a metabolic pathway gene reflects a species genetic history. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the nucleotide polymorphism and the linkage disequilibrium among the complete CRTISO sequence, and the deviation from neutral expectation were analysed by considering population subdivision revealed with 17 microsatellite markers. A sample of 39 accessions, which represented different geographical origins and root colours, was used. Cultivated carrot was divided into two genetic groups: one from Middle East and Asia (Eastern group), and another one mainly from Europe (Western group). The Western and Eastern genetic groups were suggested to be differentially affected by selection: a signature of balancing selection was detected within the first group whereas the second one showed no selection. A focus on orange-rooted carrots revealed that cultivars cultivated in Asia were mainly assigned to the Western group but showed CRTISO haplotypes common to Eastern carrots. CONCLUSION: The carotenoid pathway CRTISO gene data proved to be complementary to neutral markers in order to bring critical insight in the cultivated carrot history. We confirmed the occurrence of two migration events since domestication. Our results showed a European background in material from Japan and Central Asia. While confirming the introduction of European carrots in Japanese resources, the history of Central Asia material remains unclear.


Asunto(s)
Daucus carota/genética , Genes de Plantas , Polimorfismo de Nucleótido Simple , Teorema de Bayes , Vías Biosintéticas/genética , Carotenoides/biosíntesis , Análisis por Conglomerados , Daucus carota/enzimología , Evolución Molecular , Especiación Genética , Haplotipos , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Modelos Genéticos , Proteínas de Plantas/genética , Análisis de Secuencia de ADN , cis-trans-Isomerasas/genética
13.
PLoS One ; 7(6): e38724, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737218

RESUMEN

BACKGROUND: Selection of genes involved in metabolic pathways could target them differently depending on the position of genes in the pathway and on their role in controlling metabolic fluxes. This hypothesis was tested in the carotenoid biosynthesis pathway using population genetics and phylogenetics. METHODOLOGY/PRINCIPAL FINDINGS: Evolutionary rates of seven genes distributed along the carotenoid biosynthesis pathway, IPI, PDS, CRTISO, LCYB, LCYE, CHXE and ZEP, were compared in seven dicot taxa. A survey of deviations from neutrality expectations at these genes was also undertaken in cultivated carrot (Daucus carota subsp. sativus), a species that has been intensely bred for carotenoid pattern diversification in its root during its cultivation history. Parts of sequences of these genes were obtained from 46 individuals representing a wide diversity of cultivated carrots. Downstream genes exhibited higher deviations from neutral expectations than upstream genes. Comparisons of synonymous and nonsynonymous substitution rates between genes among dicots revealed greater constraints on upstream genes than on downstream genes. An excess of intermediate frequency polymorphisms, high nucleotide diversity and/or high differentiation of CRTISO, LCYB1 and LCYE in cultivated carrot suggest that balancing selection may have targeted genes acting centrally in the pathway. CONCLUSIONS/SIGNIFICANCE: Our results are consistent with relaxed constraints on downstream genes and selection targeting the central enzymes of the carotenoid biosynthesis pathway during carrot breeding history.


Asunto(s)
Carotenoides/metabolismo , Daucus carota/genética , Proteínas de Arabidopsis/genética , Teorema de Bayes , Evolución Molecular , Genes de Plantas , Genética de Población , Geografía , Modelos Biológicos , Modelos Genéticos , Nucleótidos/genética , Filogenia , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/genética , Polimorfismo Genético , Análisis de Componente Principal , cis-trans-Isomerasas/genética
14.
Theor Appl Genet ; 121(4): 659-72, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20411232

RESUMEN

According to the history of the cultivated carrot, root colour can be considered as a structural factor of carrot germplasm. Therefore, molecular variations of carotenoid biosynthesis genes, these being involved in colour traits, represent a good putative source of polymorphism related to diversity structure. Seven candidate genes involved in the carotenoid biosynthesis pathway have been analysed from a sample of 48 individual plants, each one from a different cultivar of carrot (Daucus carota L. ssp. sativus). The cultivars were chosen to represent a large diversity and a wide range of root colour. A high single nucleotide polymorphism (SNP) frequency of 1 SNP per 22 bp (mean pi (sil) = 0.020) was found on average within these genes. The analysis of genetic structure from carotenoid biosynthesis gene sequences and 17 putatively neutral microsatellites showed moderate genetic differentiation between cultivars originating from the West and the East (F (ST) = 0.072), this being consistent with breeding history, but not previously evidenced by molecular tools. Surprisingly, carotenoid biosynthesis genes did not exhibit decay of LD (mean r (2) = 0.635) within the 700-1,000 bp analysed, even though a fast decay level of LD is expected in outcrossing species. The high level of intralocus LD found for carotenoid biosynthesis genes implies that candidate-gene association mapping for carrot root colour should be useful to validate gene function, but may be unable to identify precisely the causative variations involved in trait determinism. Finally this study affords the first molecular evidence of a genetic structure in cultivated carrot germplasm related to phylogeography.


Asunto(s)
Carotenoides/biosíntesis , Carotenoides/genética , Daucus carota/genética , Genes de Plantas/genética , Geografía , Desequilibrio de Ligamiento/genética , Secuencia de Bases , Sitios Genéticos/genética , Variación Genética , Haplotipos/genética , Polimorfismo de Nucleótido Simple/genética , Dinámica Poblacional , Semillas/genética
15.
J Exp Bot ; 59(13): 3563-73, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18757491

RESUMEN

Carotenogenesis has been extensively studied in fruits and flower petals. Transcriptional regulation is thought to be the major factor in carotenoid accumulation in these organs. However, little is known about regulation in root organs. The root carotenoid content of carrot germplasm varies widely. The present study was conducted to investigate transcriptional regulation of carotenoid biosynthesis genes in relation to carotenoid accumulation during early carrot root development and up to 3 months after sowing. HPLC carotenoid content analysis and quantitative RT-PCR were compared to quantify the expression of eight genes encoding carotenoid biosynthesis enzymes during the development of white, yellow, orange, and red carrot roots. The genes chosen encode phytoene synthase (PSY1 and PSY2), phytoene desaturase (PDS), zeta-carotene desaturase (ZDS1 and ZDS2), lycopene epsilon-cyclase (LCYE), lycopene beta-cyclase (LCYB1), and zeaxanthin epoxidase (ZEP). All eight genes were expressed in the white cultivar even though it did not contain carotenoids. By contrast with fruit maturation, the expression of carotenogenic genes began during the early stages of development and then progressively increased for most of these genes during root development as the total carotenoid level increased in coloured carrots. The high expression of genes encoding LCYE and ZDS noted in yellow and red cultivars, respectively, might be consistent with the accumulation of lutein and lycopene, respectively. The results showed that the accumulation of total carotenoids during development and the accumulation of major carotenoids in the red and yellow cultivars might partially be explained by the transcriptional level of genes directing the carotenoid biosynthesis pathway.


Asunto(s)
Carotenoides/metabolismo , Daucus carota/enzimología , Daucus carota/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Vías Biosintéticas , Daucus carota/genética , Daucus carota/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...