Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D304-D310, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37986224

RESUMEN

TarBase is a reference database dedicated to produce, curate and deliver high quality experimentally-supported microRNA (miRNA) targets on protein-coding transcripts. In its latest version (v9.0, https://dianalab.e-ce.uth.gr/tarbasev9), it pushes the envelope by introducing virally-encoded miRNAs, interactions leading to target-directed miRNA degradation (TDMD) events and the largest collection of miRNA-gene interactions to date in a plethora of experimental settings, tissues and cell-types. It catalogues ∼6 million entries, comprising ∼2 million unique miRNA-gene pairs, supported by 37 experimental (high- and low-yield) protocols in 172 tissues and cell-types. Interactions are annotated with rich metadata including information on genes/transcripts, miRNAs, samples, experimental contexts and publications, while millions of miRNA-binding locations are also provided at cell-type resolution. A completely re-designed interface with state-of-the-art web technologies, incorporates more features, and allows flexible and ingenious use. The new interface provides the capability to design sophisticated queries with numerous filtering criteria including cell lines, experimental conditions, cell types, experimental methods, species and/or tissues of interest. Additionally, a plethora of fine-tuning capacities have been integrated to the platform, offering the refinement of the returned interactions based on miRNA confidence and expression levels, while boundless local retrieval of the offered interactions and metadata is enabled.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , MicroARNs , Genes Virales/genética , Internet , MicroARNs/genética , MicroARNs/metabolismo , Animales
2.
Neural Comput Appl ; : 1-11, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37362564

RESUMEN

The Covid-19 pandemic made a significant impact on society, including the widespread implementation of lockdowns to prevent the spread of the virus. This measure led to a decrease in face-to-face social interactions and, as an equivalent, an increase in the use of social media platforms, such as Twitter. As part of Industry 4.0, sentiment analysis can be exploited to study public attitudes toward future pandemics and sociopolitical situations in general. This work presents an analysis framework by applying a combination of natural language processing techniques and machine learning algorithms to classify the sentiment of each tweet as positive, or negative. Through extensive experimentation, we expose the ideal model for this task and, subsequently, utilize sentiment predictions to perform time series analysis over the course of the pandemic. In addition, a change point detection algorithm was applied in order to identify the turning points in public attitudes toward the pandemic, which were validated by cross-referencing the news report at that particular period of time. Finally, we study the relationship between sentiment trends on social media and, news coverage of the pandemic, providing insights into the public's perception of the pandemic and its influence on the news.

3.
Health Inf Sci Syst ; 10(1): 6, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35529251

RESUMEN

The ATHLOS cohort is composed of several harmonized datasets of international groups related to health and aging. As a result, the Healthy Aging index has been constructed based on a selection of variables from 16 individual studies. In this paper, we consider additional variables found in ATHLOS and investigate their utilization for predicting the Healthy Aging index. For this purpose, motivated by the volume and diversity of the dataset, we focus our attention upon data clustering, where unsupervised learning is utilized to enhance prediction power. Thus we show the predictive utility of exploiting hidden data structures. In addition, we demonstrate that imposed computation bottlenecks can be surpassed when using appropriate hierarchical clustering, within a clustering for ensemble classification scheme, while retaining prediction benefits. We propose a complete methodology that is evaluated against baseline methods and the original concept. The results are very encouraging suggesting further developments in this direction along with applications in tasks with similar characteristics. A straightforward open source implementation for the R project is also provided (https://github.com/Petros-Barmpas/HCEP). Supplementary Information: The online version contains supplementary material available at 10.1007/s13755-022-00171-1.

4.
IEEE Trans Med Imaging ; 37(10): 2196-2210, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29994763

RESUMEN

This paper proposes a novel methodology for automatic detection and localization of gastrointestinal (GI) anomalies in endoscopic video frame sequences. Training is performed with weakly annotated images, using only image-level, semantic labels instead of detailed, and pixel-level annotations. This makes it a cost-effective approach for the analysis of large videoendoscopy repositories. Other advantages of the proposed methodology include its capability to suggest possible locations of GI anomalies within the video frames, and its generality, in the sense that abnormal frame detection is based on automatically derived image features. It is implemented in three phases: 1) it classifies the video frames into abnormal or normal using a weakly supervised convolutional neural network (WCNN) architecture; 2) detects salient points from deeper WCNN layers, using a deep saliency detection algorithm; and 3) localizes GI anomalies using an iterative cluster unification (ICU) algorithm. ICU is based on a pointwise cross-feature-map (PCFM) descriptor extracted locally from the detected salient points using information derived from the WCNN. Results, from extensive experimentation using publicly available collections of gastrointestinal endoscopy video frames, are presented. The data sets used include a variety of GI anomalies. Both anomaly detection and localization performance achieved, in terms of the area under receiver operating characteristic (AUC), were >80%. The highest AUC for anomaly detection was obtained on conventional gastroscopy images, reaching 96%, and the highest AUC for anomaly localization was obtained on wireless capsule endoscopy images, reaching 88%.


Asunto(s)
Aprendizaje Profundo , Enfermedades Gastrointestinales/diagnóstico por imagen , Tracto Gastrointestinal/diagnóstico por imagen , Gastroscopía/métodos , Interpretación de Imagen Asistida por Computador/métodos , Algoritmos , Bases de Datos Factuales , Humanos , Grabación en Video/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...