Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(1): 228-235, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38110361

RESUMEN

The practice of monitoring therapeutic drug concentrations in patient biofluids can significantly improve clinical outcomes while simultaneously minimizing adverse side effects. A model example of this practice is vancomycin dosing in intensive care units. If dosed correctly, vancomycin can effectively treat methicillin-resistant streptococcus aureus (MRSA) infections. However, it can also induce nephrotoxicity or fail to kill the bacteria if dosed too high or too low, respectively. Although undeniably important to achieve effectiveness, therapeutic drug monitoring remains inconvenient in practice due primarily to the lengthy process of sample collection, transport to a centralized facility, and analysis using costly instrumentation. Adding to this workflow is the possibility of backlogs at centralized clinical laboratories, which is not uncommon and may result in additional delays between biofluid sampling and concentration measurement, which can negatively affect clinical outcomes. Here, we explore the possibility of using point-of-care electrochemical aptamer-based (E-AB) sensors to minimize the time delay between biofluid sampling and drug measurement. Specifically, we conducted a clinical agreement study comparing the measurement outcomes of E-AB sensors to the benchmark automated competitive immunoassays for vancomycin monitoring in serum. Our results demonstrate that E-ABs are selective for free vancomycin─the active form of the drug, over total vancomycin. In contrast, competitive immunoassays measure total vancomycin, including both protein-bound and free drug. Accounting for these differences in a pilot study consisting of 85 clinical samples, we demonstrate that the E-AB vancomycin measurement achieved a 95% positive correlation rate with the benchmark immunoassays. Therefore, we conclude that E-AB sensors could provide clinically useful stratification of patient samples at trough sampling to guide effective vancomycin dose recommendations.


Asunto(s)
Infecciones Estreptocócicas , Vancomicina , Humanos , Antibacterianos , Proyectos Piloto , Suero , Oligonucleótidos
2.
Analyst ; 146(1): 244-252, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33107522

RESUMEN

This study presents a novel plasmonic fiber optic sandwich immunobiosensor for the detection of chikungunya, an infectious mosquito-borne disease with chronic musculoskeletal pain and acute febrile illness, by exploiting non-structural protein 3 (CHIKV-nsP3) as a biomarker. A plasmonic sandwich immunoassay for CHIKV-nsP3 was realized on the surface of a compact U-bent plastic optical fiber (POF, 0.5 mm core diameter) with gold nanoparticles (AuNPs) as labels. The high evanescent wave absorbance (EWA) sensitivity of the U-bent probes allows the absorption of the light passing through the fiber by the AuNP labels, upon the formation of a sandwich immunocomplex of CHIKV-nsP3 on the core surface of the U-bent probe region. A simple optical set-up with a low-cost green LED and a photodetector on either end of the U-bent probe gave rise to a detection limit of 0.52 ng mL-1 (8.6 pM), and a linear range of 1-104 ng mL-1 with a sensitivity of 0.1043A530 nm/log(CnsP3). In addition, the plasmonic POF biosensor shows strong specificity towards the CHIKV-nsP3 analyte in comparison with Pf-HRP2, HIgG, and dengue whole virus. The results illustrate the potential of plasmonic POF biosensors for direct and sensitive point-of-care detection of the chikungunya viral disease.


Asunto(s)
Técnicas Biosensibles , Fiebre Chikungunya , Nanopartículas del Metal , Animales , Fiebre Chikungunya/diagnóstico , Oro , Fibras Ópticas , Plásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...