Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 89: 104461, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36801104

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) poses a critical threat to public health and disproportionately affects the health and well-being of persons in low-income and middle-income countries. Our aim was to identify synthetic antimicrobials termed conjugated oligoelectrolytes (COEs) that effectively treated AMR infections and whose structures could be readily modified to address current and anticipated patient needs. METHODS: Fifteen chemical variants were synthesized that contain specific alterations to the COE modular structure, and each variant was evaluated for broad-spectrum antibacterial activity and for in vitro cytotoxicity in cultured mammalian cells. Antibiotic efficacy was analyzed in murine models of sepsis; in vivo toxicity was evaluated via a blinded study of mouse clinical signs as an outcome of drug treatment. FINDINGS: We identified a compound, COE2-2hexyl, that displayed broad-spectrum antibacterial activity. This compound cured mice infected with clinical bacterial isolates derived from patients with refractory bacteremia and did not evoke bacterial resistance. COE2-2hexyl has specific effects on multiple membrane-associated functions (e.g., septation, motility, ATP synthesis, respiration, membrane permeability to small molecules) that may act together to negate bacterial cell viability and the evolution of drug-resistance. Disruption of these bacterial properties may occur through alteration of critical protein-protein or protein-lipid membrane interfaces-a mechanism of action distinct from many membrane disrupting antimicrobials or detergents that destabilize membranes to induce bacterial cell lysis. INTERPRETATION: The ease of molecular design, synthesis and modular nature of COEs offer many advantages over conventional antimicrobials, making synthesis simple, scalable and affordable. These COE features enable the construction of a spectrum of compounds with the potential for development as a new versatile therapy for an imminent global health crisis. FUNDING: U.S. Army Research Office, National Institute of Allergy and Infectious Diseases, and National Heart, Lung, and Blood Institute.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Sepsis , Ratones , Animales , Antibacterianos/farmacología , Infecciones Bacterianas/microbiología , Antiinfecciosos/farmacología , Bacterias , Sepsis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple , Mamíferos
2.
Annu Rev Virol ; 8(1): 239-264, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33882257

RESUMEN

C6 deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) is catalyzed by a family of enzymes known as ADARs (adenosine deaminases acting on RNA) encoded by three genes in mammals. Alternative promoters and splicing produce two ADAR1 proteins, an interferon-inducible cytoplasmic p150 and a constitutively expressed p110 that like ADAR2 is a nuclear enzyme. ADAR3 lacks deaminase activity. A-to-I editing occurs with both viral and cellular RNAs. Deamination activity is dependent on dsRNA substrate structure and regulatory RNA-binding proteins and ranges from highly site selective with hepatitis D RNA and glutamate receptor precursor messenger RNA (pre-mRNA) to hyperediting of measles virus and polyomavirus transcripts and cellular inverted Alu elements. Because I base-pairs as guanosine instead of A, editing can alter mRNA decoding, pre-mRNA splicing, and microRNA silencing. Editing also alters dsRNA structure, thereby suppressing innate immune responses including interferon production and action.


Asunto(s)
Adenosina Desaminasa , Virosis , Adenosina Desaminasa/química , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Edición de ARN , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
J Virol ; 92(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29237839

RESUMEN

Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5-deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication.IMPORTANCE Measles virus is a human pathogen that remains a global concern, with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here, we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that enhances the replication of measles virus.


Asunto(s)
Citoplasma/virología , N-Metiltransferasa de Histona-Lisina/metabolismo , Cuerpos de Inclusión Viral/fisiología , Virus del Sarampión/fisiología , Sarampión/virología , Proteínas Virales/metabolismo , Replicación Viral , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Sarampión/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Virales/genética
4.
Nature ; 550(7675): 249-254, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29022589

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.


Asunto(s)
Adenosina Desaminasa , Primates/genética , Edición de ARN/genética , Proteínas de Unión al ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Femenino , Genotipo , Células HEK293 , Humanos , Masculino , Ratones , Músculos/metabolismo , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética , Proteolisis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis Espacio-Temporal , Especificidad de la Especie , Transcriptoma/genética
5.
J Biol Chem ; 291(12): 6158-68, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26817845

RESUMEN

Adenosine deaminases acting on double-stranded RNA (ADARs) catalyze the deamination of adenosine (A) to produce inosine (I) in double-stranded (ds) RNA structures, a process known as A-to-I RNA editing. dsRNA is an important trigger of innate immune responses, including interferon (IFN) production and action. We examined the role of A-to-I RNA editing by two ADARs, ADAR1 and ADAR2, in the sensing of self-RNA in the absence of pathogen infection, leading to activation of IFN-induced, RNA-mediated responses in mouse embryo fibroblasts. IFN treatment of Adar1(-/-) cells lacking both the p110 constitutive and p150 IFN-inducible ADAR1 proteins induced formation of stress granules, whereas neither wild-type (WT) nor Adar2(-/-) cells displayed a comparable stress granule response following IFN treatment. Phosphorylation of protein synthesis initiation factor eIF2α at serine 51 was increased in IFN-treated Adar1(-/-) cells but not in either WT or Adar2(-/-) cells following IFN treatment. Analysis by deep sequencing of mouse exonic loci containing A-to-I-editing sites revealed that the majority of editing in mouse embryo fibroblasts was carried out by ADAR1. IFN treatment increased editing in both WT and Adar2(-/-) cells but not in either Adar1(-/-) or Adar1(-/-) (p150) cells or Stat1(-/-) or Stat2(-/-) cells. Hyper-edited sites found in predicted duplex structures showed strand bias of editing for some RNAs. These results implicate ADAR1 p150 as the major A-to-I editor in mouse embryo fibroblasts, acting as a feedback suppressor of innate immune responses otherwise triggered by self-RNAs possessing regions of double-stranded character.


Asunto(s)
Adenosina Desaminasa/fisiología , Inmunidad Innata , Edición de ARN , ARN Bicatenario/metabolismo , Animales , Células Cultivadas , Gránulos Citoplasmáticos/metabolismo , Desaminación , Factor 2 Eucariótico de Iniciación/metabolismo , Fibroblastos/metabolismo , Tolerancia Inmunológica , Interferón-alfa/fisiología , Ratones Noqueados , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Bicatenario/genética , Proteínas de Unión al ARN/fisiología , Transducción de Señal
6.
Virology ; 485: 363-70, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26335850

RESUMEN

Expression of adenosine deaminase acting on RNA1 (ADAR1) is driven by alternative promoters. Promoter PA, activated by interferon (IFN), produces transcripts that encode the inducible p150 ADAR1 protein, whereas PB specifies the constitutively expressed p110 protein. We show using Stat1(-/-), Stat2(-/-) and IRF9(-/-) MEFs that induction of ADAR1 p150 occurs by STAT2- and IRF9-dependent signaling that is enhanced by, but not obligatorily dependent upon, STAT1. Chromatin immunoprecipitation analysis demonstrated STAT2 at the PA promoter in IFN-treated Stat1(-/-) cells, whereas IFN-treated wild-type cells showed both STAT1 and STAT2 bound at PA. By contrast, with human 2fTGH cells and mutants U3A or U6A, ADAR1 induction by IFN was dependent upon both STAT1 and STAT2. These results suggest that transcriptional activation of Adar1 by IFN occurs in the absence of STAT1 by a non-canonical STAT2-dependent pathway in mouse but not human cells.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Regulación de la Expresión Génica , Interferón Tipo I/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Humanos , Interferón Tipo I/farmacología , Ratones , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/genética , Activación Transcripcional
7.
J Interferon Cytokine Res ; 34(6): 437-46, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24905200

RESUMEN

Adenosine deaminase acting on RNA1 (ADAR1) catalyzes the C6 deamination of adenosine (A) to produce inosine (I) in regions of RNA with double-stranded (ds) character. This process is known as A-to-I RNA editing. Alternative promoters drive the expression of the Adar1 gene and alternative splicing gives rise to transcripts that encode 2 ADAR1 protein size isoforms. ADAR1 p150 is an interferon (IFN)-inducible dsRNA adenosine deaminase found in the cytoplasm and nucleus, whereas ADAR1 p110 is constitutively expressed and nuclear in localization. Dependent on the duplex structure of the dsRNA substrate, deamination of adenosine by ADAR can be either highly site-selective or nonspecific. A-to-I editing can alter the stability of RNA structures and the coding of RNA as I is read as G instead of A by ribosomes during mRNA translation and by polymerases during RNA replication. A-to-I editing is of broad physiologic significance. Both the production and the action of IFNs, and hence the subsequent interaction of viruses with their hosts, are among the processes affected by A-to-I editing.


Asunto(s)
Adenosina Desaminasa/metabolismo , Edición de ARN , ARN Bicatenario/metabolismo , Animales , Humanos , Proteínas de Unión al ARN/metabolismo
8.
Curr Opin Immunol ; 23(5): 573-82, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21924887

RESUMEN

Double-stranded RNA (dsRNA) plays a centrally important role in antiviral innate immunity, both for the production of interferon (IFN) and also in the actions of IFN. Among the IFN-inducible gene products are the protein kinase regulated by RNA (PKR) and the adenosine deaminase acting on RNA 1 (ADAR1). PKR is an established key player in the antiviral actions of IFN, through dsRNA-dependent activation and subsequent phosphorylation of protein synthesis initiation factor eIF2α thereby altering the translational pattern in cells. In addition, PKR plays an important role as a positive effector that amplifies the production of IFN. ADAR1 catalyzes the deamination of adenosine (A) in RNA with double-stranded (ds) character, leading to the destabilization of RNA duplex structures and genetic recoding. By contrast to the antiviral and proapoptotic functions associated with PKR, the actions of ADAR1 in some instances are proviral and cell protective as ADAR1 functions as a suppressor of dsRNA-mediated antiviral responses including activation of PKR and interferon regulatory factor 3.


Asunto(s)
Adenosina Desaminasa/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata , Infecciones por Virus ARN/inmunología , ARN Bicatenario/inmunología , Transducción de Señal/inmunología , eIF-2 Quinasa/inmunología , Adenosina/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/inmunología , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferones/genética , Interferones/inmunología , Interferones/metabolismo , Ratones , Fosforilación , Estructura Terciaria de Proteína , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/virología , Virus ARN/inmunología , ARN Viral/inmunología , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
9.
J Virol ; 85(16): 8338-47, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21632755

RESUMEN

Adenosine deaminases acting on RNA (ADARs) catalyze the C-6 deamination of adenosine (A) to produce inosine (I), which behaves as guanine (G), thereby altering base pairing in RNAs with double-stranded character. Two genes, adar1 and adar2, are known to encode enzymatically active ADARs in mammalian cells. Furthermore, two size forms of ADAR1 are expressed by alternative promoter usage, a short (p110) nuclear form that is constitutively made and a long (p150) form that is interferon inducible and present in both the cytoplasm and nucleus. ADAR2 is also a constitutively expressed nuclear protein. Extensive A-to-G substitution has been described in mouse polyomavirus (PyV) RNA isolated late times after infection, suggesting modification by ADAR. To test the role of ADAR in PyV infection, we used genetically null mouse embryo fibroblast cells deficient in either ADAR1 or ADAR2. The single-cycle yields and growth kinetics of PyV were comparable between adar1(-/-) and adar2(-/-) genetic null fibroblast cells. While large T antigen was expressed to higher levels in adar1(-/-) cells than adar2(-/-) cells, less difference was seen in VP1 protein expression levels between the two knockout MEFs. However, virus-induced cell killing was greatly enhanced in PyV-infected adar1(-/-) cells compared to that of adar2(-/-) cells. Complementation with p110 protected cells from PyV-induced cytotoxicity. UV-irradiated PyV did not display any enhanced cytopathic effect in adar1(-/-) cells. Reovirus and vesicular stomatitis virus single-cycle yields were comparable between adar1(-/-) and adar2(-/-) cells, and neither reovirus nor VSV showed enhanced cytotoxicity in adar1(-/-)-infected cells. These results suggest that ADAR1 plays a virus-selective role in the host response to infection.


Asunto(s)
Adenosina Desaminasa/metabolismo , Efecto Citopatogénico Viral , Infecciones por Polyomavirus/virología , Poliomavirus/crecimiento & desarrollo , Adenosina Desaminasa/genética , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Antígenos Transformadores de Poliomavirus/biosíntesis , Antígenos Transformadores de Poliomavirus/genética , Emparejamiento Base , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/genética , Línea Celular , Fibroblastos , Ratones , Reacción en Cadena de la Polimerasa , Poliomavirus/patogenicidad , Proteínas de Unión al ARN , Reoviridae/crecimiento & desarrollo , Vesiculovirus/crecimiento & desarrollo
10.
J Interferon Cytokine Res ; 31(1): 99-117, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21182352

RESUMEN

Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein-RNA interactions.


Asunto(s)
Adenosina Desaminasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Interferones/metabolismo , Edición de ARN , Adenosina Desaminasa/química , Adenosina Desaminasa/genética , Animales , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Interferones/farmacología , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN
11.
Proc Natl Acad Sci U S A ; 108(1): 331-6, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173229

RESUMEN

Measles virus (MV), a member of the family Paramyxoviridae and an exclusively human pathogen, is among the most infectious viruses. A progressive fatal neurodegenerative complication, subacute sclerosing panencephalitis (SSPE), occurs during persistent MV infection of the CNS and is associated with biased hypermutations of the viral genome. The observed hypermutations of A-to-G are consistent with conversions catalyzed by the adenosine deaminase acting on RNA (ADAR1). To evaluate the role of ADAR1 in MV infection, we selectively disrupted expression of the IFN-inducible p150 ADAR1 isoform and found it caused embryonic lethality at embryo day (E) 11-E12. We therefore generated p150-deficient and WT mouse embryo fibroblast (MEF) cells stably expressing the MV receptor signaling lymphocyte activation molecule (SLAM or CD150). The p150(-/-) but not WT MEF cells displayed extensive syncytium formation and cytopathic effect (CPE) following infection with MV, consistent with an anti-MV role of the p150 isoform of ADAR1. MV titers were 3 to 4 log higher in p150(-/-) cells compared with WT cells at 21 h postinfection, and restoration of ADAR1 in p150(-/-) cells prevented MV cytopathology. In contrast to infection with MV, p150 disruption had no effect on vesicular stomatitis virus, reovirus, or lymphocytic choriomeningitis virus replication but protected against CPE resulting from infection with Newcastle disease virus, Sendai virus, canine distemper virus, and influenza A virus. Thus, ADAR1 is a restriction factor in the replication of paramyxoviruses and orthomyxoviruses.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Desarrollo Embrionario/genética , Mutación/genética , Virus SSPE/genética , Panencefalitis Esclerosante Subaguda/genética , Replicación Viral/genética , Animales , Antígenos CD/metabolismo , Línea Celular , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Proteínas Fluorescentes Verdes , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas/genética , Proteínas de Unión al ARN , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria
12.
J Interferon Cytokine Res ; 29(9): 477-87, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19715457

RESUMEN

The protein kinase regulated by RNA (PKR) and the adenosine deaminase acting on RNA (ADAR1) are interferon-inducible enzymes that play important roles in biologic processes including the antiviral actions of interferons, signal transduction, and apoptosis. PKR catalyzes the RNA-dependent phosphorylation of protein synthesis initiation factor eIF-2 alpha, thereby leading to altered translational patterns in interferon-treated and virus-infected cells. PKR also modulates signal transduction responses, including the induction of interferon. ADAR1 catalyzes the deamination of adenosine (A) to generate inosine (I) in RNAs with double-stranded character. Because I is recognized as G instead of A, A-to-I editing by ADAR1 can lead to genetic recoding and altered RNA structures. The importance of PKR and ADAR1 in innate antiviral immunity is illustrated by a number of viruses that encode either RNA or protein viral gene products that antagonize PKR and ADAR1 enzymatic activity, localization, or stability.


Asunto(s)
Adenosina Desaminasa/metabolismo , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/genética , Virus ARN/fisiología , eIF-2 Quinasa/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/inmunología , Animales , Antivirales/inmunología , Antivirales/metabolismo , Apoptosis , Inhibidores Enzimáticos/inmunología , Inhibidores Enzimáticos/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/inmunología , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Inmunidad Innata , Interferones/inmunología , Edición de ARN , Infecciones por Virus ARN/inmunología , Virus ARN/patogenicidad , Proteínas de Unión al ARN , Transducción de Señal , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/inmunología
13.
Virology ; 380(2): 338-43, 2008 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-18774582

RESUMEN

The p150 form of the RNA-specific adenosine deaminase ADAR1 is interferon-inducible and catalyzes A-to-I editing of viral and cellular RNAs. We have characterized mouse genomic clones containing the promoter regions required for Adar1 gene transcription and analyzed interferon induction of the p150 protein using mutant mouse cell lines. Transient transfection analyses using reporter constructs led to the identification of three promoters, one interferon-inducible (P(A)) and two constitutively active (P(B) and P(C)). The TATA-less P(A) promoter, characterized by the presence of a consensus ISRE element and a PKR kinase KCS-like element, directed interferon-inducible reporter expression in rodent and human cells. Interferon induction of p150 was impaired in mouse cells deficient in IFNAR receptor, JAK1 kinase or STAT2 but not STAT1. Whereas Adar1 gene organization involving multiple promoters and alternative exon 1 structures was highly preserved, sequences of the promoters and exon 1 structures were not well conserved between human and mouse.


Asunto(s)
Adenosina Desaminasa/biosíntesis , Adenosina Desaminasa/genética , Interferones/metabolismo , Regiones Promotoras Genéticas , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/metabolismo , Transcripción Genética , Animales , Fusión Artificial Génica , Secuencia de Bases , Sitios de Unión , Línea Celular , Secuencia Conservada , Genes Reporteros , Humanos , Janus Quinasa 1/deficiencia , Luciferasas/biosíntesis , Luciferasas/genética , Ratones , Datos de Secuencia Molecular , Proteínas de Unión al ARN , Receptor de Interferón alfa y beta/deficiencia , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT2/deficiencia , Análisis de Secuencia de ADN
15.
J Gene Med ; 7(6): 739-48, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15685706

RESUMEN

BACKGROUND: Gene carriers based on lipids or polymers-rather than on engineered viruses-constitute the latest technique for delivering genes into cells for gene therapy. Cationic liposome-DNA (CL-DNA) complexes have emerged as leading nonviral vectors in worldwide gene therapy clinical trials. To arrive at therapeutic dosages, however, their efficiency requires substantial further improvement. METHODS: Newly synthesized multivalent lipids (MVLs) enable control of headgroup charge and size. Complexes comprised of MVLs and DNA have been characterized by X-ray diffraction and ethidium bromide displacement assays. Their transfection efficiency (TE) in L-cells was measured with a luciferase assay. RESULTS: Plots of TE versus the membrane charge density (sigmaM, average charge/unit area of membrane) for the MVLs and monovalent 2,3-dioleyloxypropyltrimethylammonium chloride (DOTAP) merge onto a universal, bell-shaped curve. This bell curve leads to the identification of three distinct regimes, related to interactions between complexes and cells: at low sigmaM, TE increases with increasing sigmaM; at intermediate sigmaM, TE exhibits saturated behavior; and unexpectedly, at high sigmaM, TE decreases with increasing sigmaM. CONCLUSIONS: Complexes with low sigmaM remain trapped in the endosome. In the high sigmaM regime, accessible for the first time with the new MVLs, complexes escape by overcoming a kinetic barrier to fusion with the endosomal membrane (activated fusion), yet they exhibit a reduced level of efficiency, presumably due to the inability of the DNA to dissociate from the highly charged membranes in the cytosol. The intermediate, optimal regime reflects a compromise between the opposing demands on sigmaM for endosomal escape and dissociation in the cytosol.


Asunto(s)
ADN/química , ADN/farmacocinética , Técnicas de Transferencia de Gen , Liposomas/química , Liposomas/farmacocinética , Transfección , Animales , Cationes , Ácidos Grasos Monoinsaturados/química , Genes Reporteros , Terapia Genética , Células L , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/farmacocinética , Luciferasas/metabolismo , Ratones , Modelos Biológicos , Modelos Químicos , Distribución Normal , Fosfatidiletanolaminas/química , Compuestos de Amonio Cuaternario/química , Difracción de Rayos X
16.
J Biol Chem ; 280(15): 15020-8, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15677478

RESUMEN

ADAR1 (adenosine deaminase acting on RNA) is widely expressed in adult mammals and has a critical role during embryogenesis. Two size forms of ADAR1 are known that possess adenosine-to-inosine editing activity: an interferon (IFN)-inducible approximately 150-kDa protein and a constitutively expressed N-terminally truncated approximately 110-kDa protein. We defined the structure of the 5'-flanking region of the mouse Adar1 gene, and we show here that mouse Adar1 transcripts possess alternative exon 1 structures (1A, 1B, and 1C) that initiate from unique promoters and are spliced to a common exon 2 junction. Exon 1A-containing transcripts encoding p150 were expressed in all tissues examined from adult mice (brain, cecum, heart, kidney, liver, lung, spleen, and Peyer's patches) and were elevated most significantly in liver but remained lowest in brain following oral infection with Salmonella. Exon 1B-containing RNA was most abundant in brain and was not increased in any tissue examined following infection. Exon 1C-containing RNA was very scarce. Exon 1A, but not exon 1B or 1C, expression was increased in fibroblast L cells treated with IFN, and a consensus ISRE element was present in the promoter driving exon 1A expression. Exon 1B, but not 1A, was detectable in embryonic day 10.5 embryos and was abundantly expressed in embryonic day 15 embryos. Furthermore, the ADAR1 p110 protein isoform was detected in embryonic tissue, whereas both p110 and the inducible p150 proteins were found in IFN-treated L cells. Finally, the presence of alternative exon 7a correlated with exon 1B-containing RNA, and alternative exon 7b correlated with exon 1A-containing RNA. These results establish that multiple promoters drive the expression of the Adar1 gene in adult mice, that the IFN inducible promoter and exon 1A-containing RNA are primarily responsible for the increased ADAR1 observed in Salmonella-infected mice, and that the constitutive exon 1B-containing transcript and encoded p110 protein product are abundantly expressed both in adult brain and during embryogenesis.


Asunto(s)
Adenosina Desaminasa/biosíntesis , Adenosina Desaminasa/química , Empalme Alternativo , Embrión de Mamíferos/microbiología , Interferones/metabolismo , Regiones Promotoras Genéticas , ARN/química , Adenosina/química , Animales , Secuencia de Bases , Northern Blotting , Southern Blotting , Encéfalo/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos , Exones , Fibroblastos/metabolismo , Inosina/química , Ratones , Ratones Endogámicos BALB C , Modelos Genéticos , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Plásmidos/metabolismo , Isoformas de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salmonella/metabolismo , Homología de Secuencia de Ácido Nucleico , Factores de Tiempo , Distribución Tisular
17.
Biophys J ; 84(5): 3307-16, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12719260

RESUMEN

Cationic liposomes (CLs) are used worldwide as gene vectors (carriers) in nonviral clinical applications of gene delivery, albeit with unacceptably low transfection efficiencies (TE). We present three-dimensional laser scanning confocal microscopy studies revealing distinct interactions between CL-DNA complexes, for both lamellar L(alpha)(C) and inverted hexagonal H(II)(C) nanostructures, and mouse fibroblast cells. Confocal images of L(alpha)(C) complexes in cells identified two regimes. For low membrane charge density (sigma(M)), DNA remained trapped in CL-vectors. By contrast, for high sigma(M), released DNA was observed in the cytoplasm, indicative of escape from endosomes through fusion. Remarkably, firefly luciferase reporter gene studies in the highly complex L(alpha)(C)-mammalian cell system revealed an unexpected simplicity where, at a constant cationic to anionic charge ratio, TE data for univalent and multivalent cationic lipids merged into a single curve as a function of sigma(M), identifying it as a key universal parameter. The universal curve for transfection by L(alpha)(C) complexes climbs exponentially over approximately four decades with increasing sigma(M) below an optimal charge density (sigma(M)(*)), and saturates for at a value rivaling the high transfection efficiency of H(II)(C) complexes. In contrast, the transfection efficiency of H(II)(C) complexes is independent of sigma(M). The exponential dependence of TE on sigma(M) for L(alpha)(C) complexes, suggests the existence of a kinetic barrier against endosomal fusion, where an increase in sigma(M) lowers the barrier. In the saturated TE regime, for both L(alpha)(C) complexes and H(II)(C), confocal microscopy reveals the dissociation of lipid and DNA. However, the lipid-released DNA is observed to be in a condensed state, most likely with oppositely charged macro-ion condensing agents from the cytoplasm, which remain to be identified. Much of the observed bulk of condensed DNA may be transcriptionally inactive and may determine the current limiting factor to transfection by cationic lipid gene vectors.


Asunto(s)
ADN/química , ADN/farmacocinética , Imagenología Tridimensional/métodos , Liposomas/química , Liposomas/farmacocinética , Microscopía Confocal/métodos , Transfección/métodos , Animales , ADN/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Fibroblastos/química , Fibroblastos/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/farmacocinética , Liposomas/administración & dosificación , Sustancias Macromoleculares , Ratones , Conformación Molecular , Nanotecnología/métodos , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...