Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38932458

RESUMEN

We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IM2) protein reconstituted in 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPC/DOPS) bilayers to those in isolated Escherichia coli (E. coli) membranes, having preserved its native proteins and lipids. IM2 is a single-pass transmembrane protein known to assemble into a homo-tetrameric proton channel. To represent this channel, we made a construct containing the IM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitution, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the electron spin resonance (ESR) study. For this particular residue, we probed the conformations of the spin-labeled IM2 reconstituted in DOPC/DOPS and isolated E. coli membranes using continuous-wave ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400. The continuous-wave ESR spectra corresponded to very slow spin-label motion in both environments. In all cases, the DEER data were reconstructed into distance distributions with well-resolved peaks at 1.68 and 2.37 nm in distance and amplitude ratios of 1.41 ± 0.2 and 2:1, respectively. This suggests four nitroxide spin labels located at the corners of a square, indicative of an axially symmetric tetramer. The distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IM2 TMD tetramer in agreement with the model. Thus, we can conclude that, under conditions of pH 7.4 used in this study, IM2 TMD has similar conformations in model lipid bilayers and membranes made of native E. coli lipids and proteins of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.

2.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397029

RESUMEN

To delve into the structure-function relationship of transmembrane proteins (TMPs), robust protocols are needed to produce them in a pure, stable, and functional state. Among all hosts that express heterologous TMPs, E. coli has the lowest cost and fastest turnover. However, many of the TMPs expressed in E. coli are misfolded. Several strategies have been developed to either direct the foreign TMPs to E. coli's membrane or retain them in a cytosolic soluble form to overcome this deficiency. Here, we summarize protein engineering methods to produce chimera constructs of the desired TMPs fused to either a signal peptide or precursor maltose binding protein (pMBP) to direct the entire construct to the periplasm, therefore depositing the fused TMP in the plasma membrane. We further describe strategies to produce TMPs in soluble form by utilizing N-terminally fused MBP without a signal peptide. Depending on its N- or C-terminus location, a fusion to apolipoprotein AI can either direct the TMP to the membrane or shield the hydrophobic regions of the TMP, maintaining the soluble form. Strategies to produce G-protein-coupled receptors, TMPs of Mycobacterium tuberculosis, HIV-1 Vpu, and other TMPs are discussed. This knowledge could increase the scope of TMPs' expression in E. coli.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Señales de Clasificación de Proteína , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
3.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260371

RESUMEN

We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IAM2) protein reconstituted at pH 7.4 in DOPC/DOPS bilayers to those in isolated E. coli membranes, having preserved its native proteins and lipids. IAM2 is a single-pass transmembrane protein known to assemble into homo-tetrameric proton channel. To represent this channel, we made a construct containing the IAM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitute, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the ESR (electron spin resonance) study. We compared the conformations of the spin-labeled IAM2 residing in DOPC/DOPS and native E. coli membranes using continuous-wave (CW) ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400⩦ The CW ESR spectra corresponded to a nearly rigid limit spin label dynamics in both environments. In all cases, the DEER data were reconstructed into the distance distributions showing well-resolved peaks at 1.68 nm and 2.37 nm. The peak distance ratio was 1.41±0.2 and the amplitude ratio was 2:1. This is what one expects from four nitroxide spin-labels located at the corners of a square, indicative of an axially symmetric tetramer. Distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IAM2 tetramer in agreement with the NMR model. Thus, we can conclude that IAM2 TMD has similar conformations in model and native E. coli membranes of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.

4.
Sci Rep ; 13(1): 14691, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673923

RESUMEN

We report our findings on the assembly of the HIV-1 protein Vpu into soluble oligomers. Vpu is a key HIV-1 protein. It has been considered exclusively a single-pass membrane protein. Previous observations show that this protein forms stable oligomers in aqueous solution, but details about these oligomers still remain obscure. This is an interesting and rather unique observation, as the number of proteins transitioning between soluble and membrane embedded states is limited. In this study we made use of protein engineering, size exclusion chromatography, cryoEM and electron paramagnetic resonance (EPR) spectroscopy to better elucidate the nature of the soluble oligomers. We found that Vpu oligomerizes via its N-terminal transmembrane domain (TM). CryoEM suggests that the oligomeric state most likely is a hexamer/heptamer equilibrium. Both cryoEM and EPR suggest that, within the oligomer, the distal C-terminal region of Vpu is highly flexible. Our observations are consistent with both the concept of specific interactions among TM helices or the core of the oligomers being stabilized by hydrophobic forces. While this study does not resolve all of the questions about Vpu oligomers or their functional role in HIV-1 it provides new fundamental information about the size and nature of the oligomeric interactions.


Asunto(s)
Pabellón Auricular , Seropositividad para VIH , VIH-1 , Humanos , Cromatografía en Gel , Microscopía por Crioelectrón
5.
bioRxiv ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37214796

RESUMEN

We report our findings on the assembly of the HIV-1 protein Vpu into soluble oligomers. Vpu is a key to HIV-1 protein. It has been considered exclusively a single-pass membrane protein. However, we revealed that this protein forms stable oligomers in aqueous solution, which is an interesting and rather unique observation, as the number of proteins transitioning between soluble and membrane embedded states is limited. Therefore, we undertook a study to characterize these oligomers by utilizing protein engineering, size exclusion chromatography, cryoEM and electron paramagnetic resonance (EPR) spectroscopy. We found that Vpu oligomerizes via its N-terminal transmembrane domain (TM). CryoEM analyses suggest that the oligomeric state most likely is a hexamer or hexamer-to-heptamer equilibrium. Both cryoEM and EPR suggest that, within the oligomer, the distant C-terminal region of Vpu is highly flexible. To the best of our knowledge, this is the first comprehensive study on soluble Vpu. We propose that these oligomers are stabilized via possibly hydrophobic interactions between Vpu TMs. Our findings contribute valuable information about this protein properties and about protein supramolecular complexes formation. The acquired knowledge could be further used in protein engineering, and could also help to uncover possible physiological function of these Vpu oligomers.

6.
J Struct Biol ; 215(1): 107943, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796461

RESUMEN

The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in ß-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.


Asunto(s)
VIH-1 , Proteínas del Virus de la Inmunodeficiencia Humana , Proteínas Reguladoras y Accesorias Virales , Proteínas Viroporinas , Membrana Celular/metabolismo , Escherichia coli , VIH-1/química , Canales Iónicos/química , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas Viroporinas/química , Proteínas Reguladoras y Accesorias Virales/química
7.
Membranes (Basel) ; 11(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34564502

RESUMEN

Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.

8.
Molecules ; 25(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218036

RESUMEN

Detailed study of conformational rearrangements and dynamics of proteins is central to our understanding of their physiological functions and the loss of function. This review outlines the applications of the electron paramagnetic resonance (EPR) technique to study the structural aspects of proteins transitioning from a solution environment to the states in which they are associated with the surfaces of biological membranes or engineered nanoobjects. In the former case these structural transitions generally underlie functional protein states. The latter case is mostly relevant to the application of protein immobilization in biotechnological industries, developing methods for protein purification, etc. Therefore, evaluating the stability of the protein functional state is particularly important. EPR spectroscopy in the form of continuous-wave EPR or pulse EPR distance measurements in conjunction with protein spin labeling provides highly versatile and sensitive tools to characterize the changes in protein local dynamics as well as large conformational rearrangements. The technique can be widely utilized in studies of both protein-membrane and engineered nanoobject-protein complexes.


Asunto(s)
Lípidos de la Membrana/química , Nanopartículas/química , Nanotecnología , Conformación Proteica , Espectroscopía de Resonancia por Spin del Electrón , Marcadores de Spin
9.
Protein Expr Purif ; 173: 105659, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32360379

RESUMEN

Human T-cell leukemia virus type 1 is an oncovirus that causes aggressive adult T-cell leukemia but is also responsible for severe neurodegenerative and endocrine disorders. Combatting HTLV-1 infections requires a detailed understanding of the viral mechanisms in the host. Therefore, in vitro studies of important virus-encoded proteins would be critical. Our focus herein is on the HTLV-1-encoded regulatory protein p13II, which interacts with the inner mitochondrial membrane, increasing its permeability to cations (predominantly potassium, K+). Thereby, this protein affects mitochondrial homeostasis. We report on our progress in developing specific protocols for heterologous expression of p13II in E. coli, and methods for its purification and characterization. We succeeded in producing large quantities of highly-pure full-length p13II, deemed to be its fully functional form. Importantly, our particular approach based on the fusion of ubiquitin to the p13II C-terminus was instrumental in increasing the persistently low expression of soluble p13II in its native form. We subsequently developed approaches for protein spin labeling and a conformation study using double electron-electron resonance (DEER) spectroscopy and a fluorescence-based cation uptake assay for p13II in liposomes. Our DEER results point to large protein conformation changes occurring upon transition from the soluble to the membrane-bound state. The functional assay on p13II-assisted transport of thallium (Tl+) through the membrane, wherein Tl+ substituted for K+, suggests transmembrane potential involvement in p13II function. Our study lays the foundation for expansion of in vitro functional and structural investigations on p13II and would aid in the development of structure-based protein inhibitors and markers.


Asunto(s)
Escherichia coli , Virus Linfotrópico T Tipo 1 Humano/genética , Proteínas de los Retroviridae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas de los Retroviridae/biosíntesis , Proteínas de los Retroviridae/química , Proteínas de los Retroviridae/genética , Proteínas de los Retroviridae/aislamiento & purificación
10.
Int J Mol Sci ; 19(11)2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30413005

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of illnesses, such as adult T-cell leukemia/lymphoma, myelopathy/tropical spastic paraparesis (a neurodegenerative disorder), and other diseases. Therefore, HTLV-1 infection is a serious public health concern. Currently, diseases caused by HTLV-1 cannot be prevented or cured. Hence, there is a pressing need to comprehensively understand the mechanisms of HTLV-1 infection and intervention in host cell physiology. HTLV-1-encoded non-structural proteins that reside and function in the cellular membranes are of particular interest, because they alter cellular components, signaling pathways, and transcriptional mechanisms. Summarized herein is the current knowledge about the functions of the membrane-associated p8I, p12I, and p13II regulatory non-structural proteins. p12I resides in endomembranes and interacts with host proteins on the pathways of signal transduction, thus preventing immune responses to the virus. p8I is a proteolytic product of p12I residing in the plasma membrane, where it contributes to T-cell deactivation and participates in cellular conduits, enhancing virus transmission. p13II associates with the inner mitochondrial membrane, where it is proposed to function as a potassium channel. Potassium influx through p13II in the matrix causes membrane depolarization and triggers processes that lead to either T-cell activation or cell death through apoptosis.


Asunto(s)
Membrana Celular/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Leucemia de Células T/genética , Proteínas Virales/genética , Apoptosis/genética , Membrana Celular/virología , Proliferación Celular/genética , Regulación Viral de la Expresión Génica/genética , Humanos , Leucemia de Células T/patología , Leucemia de Células T/virología , Linfocitos T/virología
11.
Elife ; 72018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29889023

RESUMEN

Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified for functional or spectroscopic studies. Here, we describe a general approach for in vitro assembly that can be used for the generation of heteromeric variants of homomeric membrane proteins. We establish the approach using GltPh, a glutamate transporter homolog that is trimeric in the native state. We use heteromeric GltPh transporters to directly demonstrate the lack of coupling in substrate binding and demonstrate how heteromeric transporters considerably simplify the application of DEER spectroscopy. Further, we demonstrate the general applicability of this approach by carrying out the in vitro assembly of VcINDY, a Na+-coupled succinate transporter and CLC-ec1, a Cl-/H+ antiporter.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Conformación Proteica , Multimerización de Proteína , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Homología de Secuencia de Aminoácido
12.
Nat Struct Mol Biol ; 25(5): 416-424, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29728654

RESUMEN

Viral fusogens merge viral and cell membranes during cell penetration. Their ectodomains drive fusion by undergoing large-scale refolding, but little is known about the functionally important regions located within or near the membrane. Here we report the crystal structure of full-length glycoprotein B (gB), the fusogen from herpes simplex virus, complemented by electron spin resonance measurements. The membrane-proximal (MPR), transmembrane (TMD), and cytoplasmic (CTD) domains form a uniquely folded trimeric pedestal beneath the ectodomain, which balances dynamic flexibility with extensive, stabilizing membrane interactions. The postfusion conformation of the ectodomain suggests that the CTD likewise adopted the postfusion form. However, hyperfusogenic mutations, which destabilize the prefusion state of gB, target key interfaces and structural motifs that reinforce the observed CTD structure. Thus, a similar CTD structure must stabilize gB in its prefusion state. Our data suggest a model for how this dynamic, membrane-dependent 'clamp' controls the fusogenic refolding of gB.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/ultraestructura , Fusión de Membrana/fisiología , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/metabolismo , Acoplamiento Viral , Animales , Células CHO , Cricetulus , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Herpesvirus Humano 1/genética , Conformación Proteica , Células Sf9 , Proteínas del Envoltorio Viral/genética , Internalización del Virus
13.
Sci Rep ; 7: 44739, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28303942

RESUMEN

The self-assembly of the microtubule associated tau protein into fibrillar cell inclusions is linked to a number of devastating neurodegenerative disorders collectively known as tauopathies. The mechanism by which tau self-assembles into pathological entities is a matter of much debate, largely due to the lack of direct experimental insights into the earliest stages of aggregation. We present pulsed double electron-electron resonance measurements of two key fibril-forming regions of tau, PHF6 and PHF6*, in transient as aggregation happens. By monitoring the end-to-end distance distribution of these segments as a function of aggregation time, we show that the PHF6(*) regions dramatically extend to distances commensurate with extended ß-strand structures within the earliest stages of aggregation, well before fibril formation. Combined with simulations, our experiments show that the extended ß-strand conformational state of PHF6(*) is readily populated under aggregating conditions, constituting a defining signature of aggregation-prone tau, and as such, a possible target for therapeutic interventions.


Asunto(s)
Agregado de Proteínas , Proteínas tau/química , Secuencia de Aminoácidos , Electrones , Heparina/farmacología , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Péptidos/química , Conformación Proteica , Soluciones , Factores de Tiempo , Proteínas tau/ultraestructura
14.
J Phys Chem A ; 121(12): 2452-2465, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28257206

RESUMEN

We adapt a new wavelet-transform-based method of denoising experimental signals to pulse-dipolar electron-spin resonance spectroscopy (PDS). We show that signal averaging times of the time-domain signals can be reduced by as much as 2 orders of magnitude, while retaining the fidelity of the underlying signals, in comparison with noiseless reference signals. We have achieved excellent signal recovery when the initial noisy signal has an SNR ≳ 3. This approach is robust and is expected to be applicable to other time-domain spectroscopies. In PDS, these time-domain signals representing the dipolar interaction between two electron spin labels are converted into their distance distribution functions P(r), usually by regularization methods such as Tikhonov regularization. The significant improvements achieved by using denoised signals for this regularization are described. We show that they yield P(r)'s with more accurate detail and yield clearer separations of respective distances, which is especially important when the P(r)'s are complex. Also, longer distance P(r)'s, requiring longer dipolar evolution times, become accessible after denoising. In comparison to standard wavelet denoising approaches, it is clearly shown that the new method (WavPDS) is superior.

15.
Front Physiol ; 7: 317, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27524969

RESUMEN

The M2 protein from influenza A plays important roles in its viral cycle. It contains a single transmembrane helix, which oligomerizes into a homotetrameric proton channel that conducts in the low-pH environment of the host-cell endosome and Golgi apparatus, leading to virion uncoating at an early stage of infection. We studied conformational rearrangements that occur in the M2 core transmembrane domain residing on the lipid bilayer, flanked by juxtamembrane residues (M2TMD21-49 fragment), upon its interaction with amantadine drug at pH 5.5 when M2 is conductive. We also tested the role of specific mutation and lipid chain length. Electron spin resonance (ESR) spectroscopy and electron microscopy were applied to M2TMD21-49, labeled at the residue L46C with either nitroxide spin-label or Nanogold® reagent, respectively. Electron microscopy confirmed that M2TMD21-49 reconstituted into DOPC/POPS at 1:10,000 peptide-to-lipid molar ratio (P/L) either with or without amantadine, is an admixture of monomers, dimers, and tetramers, confirming our model based on a dimer intermediate in the assembly of M2TMD21-49. As reported by double electron-electron resonance (DEER), in DOPC/POPS membranes amantadine shifts oligomer equilibrium to favor tetramers, as evidenced by an increase in DEER modulation depth for P/L's ranging from 1:18,000 to 1:160. Furthermore, amantadine binding shortens the inter-spin distances (for nitroxide labels) by 5-8 Å, indicating drug induced channel closure on the C-terminal side. No such effect was observed for the thinner membrane of DLPC/DLPS, emphasizing the role of bilayer thickness. The analysis of continuous wave (cw) ESR spectra of spin-labeled L46C residue provides additional support to a more compact helix bundle in amantadine-bound M2TMD 21-49 through increased motional ordering. In contrast to wild-type M2TMD21-49, the amantadine-bound form does not exhibit noticeable conformational changes in the case of G34A mutation found in certain drug-resistant influenza strains. Thus, the inhibited M2TMD21-49 channel is a stable tetramer with a closed C-terminal exit pore. This work is aimed at contributing to the development of structure-based anti-influenza pharmaceuticals.

16.
Biochemistry ; 54(50): 7309-12, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26636181

RESUMEN

Cyclooxygenases (COXs) are heme-containing sequence homodimers that utilize tyrosyl radical-based catalysis to oxygenate substrates. Tyrosyl radicals are formed from a single turnover of substrate in the peroxidase active site generating an oxy-ferryl porphyrin cation radical intermediate that subsequently gives rise to a Tyr-385 radical in the cyclooxygenase active site and a Tyr-504 radical nearby. We have utilized double-quantum coherence (DQC) spectroscopy to determine the distance distributions between Tyr-385 and Tyr-504 radicals in COX-2. The distances obtained with DQC confirm that Tyr-385 and Tyr-504 radicals were generated in each monomer and accurately match the distances measured in COX-2 crystal structures.


Asunto(s)
Ciclooxigenasa 2/química , Análisis Espectral/métodos , Tirosina/química , Dimerización , Modelos Moleculares
17.
Sci Rep ; 5: 11757, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26190831

RESUMEN

M2 from influenza A virus functions as an oligomeric proton channel essential for the viral cycle, hence it is a high-priority pharmacological target whose structure and functions require better understanding. We studied the mechanism of M2 transmembrane domain (M2TMD) assembly in lipid membranes by the powerful biophysical technique of double electron-electron resonance (DEER) spectroscopy. By varying the M2TMD-to-lipid molar ratio over a wide range from 1:18,800 to 1:160, we found that M2TMD exists as monomers, dimers, and tetramers whose relative populations shift to tetramers with the increase of peptide-to-lipid (P/L) molar ratio. Our results strongly support the tandem mechanism of M2 assembly that is monomers-to-dimer then dimers-to-tetramer, since tight dimers are abundant at small P/L's, and thereafter they assemble as dimers of dimers in weaker tetramers. The stepwise mechanism found for a single-pass membrane protein oligomeric assembly should contribute to the knowledge of the association steps in membrane protein folding.


Asunto(s)
Membrana Celular/metabolismo , Virus de la Influenza A/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de la Matriz Viral/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Péptidos/metabolismo , Multimerización de Proteína , Proteínas de la Matriz Viral/química
18.
Nature ; 518(7537): 68-73, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25652997

RESUMEN

Glutamate transporters terminate neurotransmission by clearing synaptically released glutamate from the extracellular space, allowing repeated rounds of signalling and preventing glutamate-mediated excitotoxicity. Crystallographic studies of a glutamate transporter homologue from the archaeon Pyrococcus horikoshii, GltPh, showed that distinct transport domains translocate substrates into the cytoplasm by moving across the membrane within a central trimerization scaffold. Here we report direct observations of these 'elevator-like' transport domain motions in the context of reconstituted proteoliposomes and physiological ion gradients using single-molecule fluorescence resonance energy transfer (smFRET) imaging. We show that GltPh bearing two mutations introduced to impart characteristics of the human transporter exhibits markedly increased transport domain dynamics, which parallels an increased rate of substrate transport, thereby establishing a direct temporal relationship between transport domain motion and substrate uptake. Crystallographic and computational investigations corroborated these findings by revealing that the 'humanizing' mutations favour structurally 'unlocked' intermediate states in the transport cycle exhibiting increased solvent occupancy at the interface between the transport domain and the trimeric scaffold.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/química , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Ácido Aspártico/metabolismo , Pyrococcus horikoshii/química , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Acídicos/genética , Transporte Biológico , Cristalografía por Rayos X , Detergentes , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Movimiento , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteolípidos/metabolismo , Sodio/metabolismo , Solventes , Termodinámica
19.
Biophys J ; 107(6): 1441-52, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25229151

RESUMEN

Tau is a microtubule-associated protein that is genetically linked to dementia and linked to Alzheimer's disease via its presence in intraneuronal neurofibrillary tangle deposits, where it takes the form of aggregated paired helical and straight filaments. Although the precise mechanisms by which tau contributes to neurodegeneration remain unclear, tau aggregation is commonly considered to be a critical component of tau-mediated pathogenicity. Nevertheless, the context in which tau aggregation begins in vivo is unknown. Tau is enriched in membrane-rich neuronal structures such as axons and growth cones, and can interact with membranes both via intermediary proteins and directly via its microtubule-binding domain (MBD). Membranes efficiently facilitate tau aggregation in vitro, and may therefore provide a physiologically relevant context for nucleating tau aggregation in vivo. Furthermore, tau-membrane interactions may potentially play a role in tau's poorly understood normal physiological functions. Despite the potential importance of direct tau-membrane interactions for tau pathology and physiology, the structural mechanisms that underlie such interactions remain to be elucidated. Here, we employ electron spin resonance spectroscopy to investigate the secondary and long-range structural properties of the MBD of three-repeat tau isoforms when bound to lipid vesicles and membrane mimetics. We show that the membrane interactions of the tau MBD are mediated by short amphipathic helices formed within each of the MBD repeats in the membrane-bound state. To our knowledge, this is the first detailed elucidation of helical tau structure in the context of intact lipid bilayers. We further show, for the first time (to our knowledge), that these individual helical regions behave as independent membrane-binding sites linked by flexible connecting regions. These results represent the first (to our knowledge) detailed structural view of membrane-bound tau and provide insights into potential mechanisms for membrane-mediated tau aggregation. Furthermore, the results may have implications for the structural basis of tau-microtubule interactions and microtubule-mediated tau aggregation.


Asunto(s)
Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Microtúbulos/metabolismo , Secuencias Repetitivas de Aminoácido , Proteínas tau/química , Proteínas tau/metabolismo , Secuencia de Aminoácidos , Membrana Celular/química , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
20.
Nat Struct Mol Biol ; 20(2): 215-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23334289

RESUMEN

Sodium and aspartate symporter from Pyrococcus horikoshii, Glt(Ph), is a homolog of the mammalian glutamate transporters, homotrimeric integral membrane proteins that control neurotransmitter levels in brain synapses. These transporters function by alternating between outward-facing and inward-facing states, in which the substrate binding site is oriented toward the extracellular space and the cytoplasm, respectively. Here we used double electron-electron resonance (DEER) spectroscopy to probe the structure and the state distribution of the subunits in the trimer in distinct hydrophobic environments of detergent micelles and lipid bilayers. Our experiments reveal a conformational ensemble of protomers that sample the outward-facing and inward-facing states with nearly equal probabilities, indicative of comparable energies, and independently of each other. On average, the distributions varied only modestly in detergent and in bilayers, but in several mutants unique conformations were stabilized by the latter.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/química , Proteínas Arqueales/química , Ácido Aspártico/metabolismo , Modelos Moleculares , Conformación Proteica , Pyrococcus horikoshii/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Membrana Dobles de Lípidos/metabolismo , Micelas , Subunidades de Proteína/química , Sodio/metabolismo , Análisis Espectral/métodos , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA