Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 265: 115507, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742575

RESUMEN

The freshwater crayfish, Procambarus clarkii is an excellent aquatic animal model that is highly adaptable and tolerant. P. clarkii is widely used as a toxicity model to study various pharmaceutical exposure. This animal model has complex behavioral traits and is considered sensitive to environmental changes, making it an excellent candidate to study psychoactive drugs based on a behavioral approach. However, up to now, most behavioral studies on crayfish use manual observation and scoring that require panelists. In this study, we aim to develop an automation pipeline to analyze crayfish behavior automatically. We use a deep-learning approach to label body parts in multiple crayfish, and based on the trajectory results, the intra- or inter-individual crayfish were calculated. Reliable and fast results of several behavior endpoints in multiple crayfish were retrieved. We then validated the detection performance of numerous crayfish in specific gender groups (male-male and female-female). Based on the result, the male crayfish displayed significantly higher aggression than females. We also tested the antidepressant exposure on this animal model to evaluate the psychoactive effects of this drug. As male crayfish display more distinct agonistic behavior than females, we exposed them to sertraline (SRT) 1 ppb for 7 and 14 days. It was revealed that sertraline was able to alter several behavioral endpoints in crayfish. Significant increases in extend claw ratio, total distance moved, average speed, and rapid movement were displayed in sertraline-exposed crayfish but decreased interaction time and longest interaction time. In addition, SRT 14 days exposure could atler the aggressiveness and bold behavior In the present method, DeepLabCut (DLC) has been utilized to analyze the locomotion behavior of multiple crayfish. This established method provides rapid and accurate ecotoxicity measurements using freshwater crayfish, which beneficient and applicable for environmental research.

2.
Biosensors (Basel) ; 13(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37622894

RESUMEN

Magnetic nanoparticles (MNPs) have been widely utilized in the biomedical field for numerous years, offering several advantages such as exceptional biocompatibility and diverse applications in biology. However, the existing methods for quantifying magnetic labeled sample assays are scarce. This research presents a novel approach by developing a microfluidic chip system embedded with a giant magnetoresistance (GMR) sensor. The system successfully detects low concentrations of MNPs with magnetic particle velocities of 20 mm/s. The stray field generated by the magnetic subject flowing through the microchannel above the GMR sensor causes variations in the signals. The sensor's output signals are appropriately amplified, filtered, and processed to provide valuable indications. The integration of the GMR microfluidic chip system demonstrates notable attributes, including affordability, speed, and user-friendly operation. Moreover, it exhibits a high detection sensitivity of 10 µg/µL for MNPs, achieved through optimizing the vertical magnetic field to 100 Oe and the horizontal magnetic field to 2 Oe. Additionally, the study examines magnetic labeled RAW264.7 cells. This quantitative detection of magnetic nanoparticles can have applications in DNA concentration detection, protein concentration detection, and other promising areas of research.


Asunto(s)
Nanopartículas de Magnetita , Microfluídica , Bioensayo , Campos Magnéticos
4.
Neurophotonics ; 9(4): 045003, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36338453

RESUMEN

Significance: Revealing the dynamic associations between brain functions and behaviors is a significant challenge in neurotechnology, especially for awake subjects. Imaging cerebral hemodynamics in awake animal models is important because the collected data more realistically reflect human disease states. Aim: We previously reported a miniature head-mounted scanning photoacoustic imaging (hmPAI) system. In the present study, we utilized this system to investigate the effects of ketamine on the cerebral hemodynamics of normal rats and rats subjected to prolonged ketamine self-administration. Approach: The cortical superior sagittal sinus (SSS) was continuously monitored. The full-width at half-maximum (FWHM) of the photoacoustic (PA) A-line signal was used as an indicator of the SSS diameter, and the number of pixels in PA B-scan images was used to investigate changes in the cerebral blood volume (CBV). Results: We observed a significantly higher FWHM (blood vessel diameter) and CBV in normal rats injected with ketamine than in normal rats injected with saline. For rats subjected to prolonged ketamine self-administration, no significant changes in either the blood vessel diameter or CBV were observed. Conclusions: The lack of significant change in prolonged ketamine-exposed rats was potentially due to an increased ketamine tolerance. Our device can reliably detect changes in the dilation of cortical blood vessels and the CBV. This study validates the utility of the developed hmPAI system in an awake, freely moving rat model for behavioral, cognitive, and preclinical cerebral disease studies.

5.
Antibiotics (Basel) ; 11(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36009928

RESUMEN

Antibiotics are extensively used in aquaculture to prevent bacterial infection and the spread of diseases. Some antibiotics have a relatively longer half-life in water and may induce some adverse effects on the targeted fish species. This study analyzed the potential adverse effects of antibiotics in zebrafish at the behavioral level by a phenomic approach. We conducted three-dimensional (3D) locomotion tracking for adult zebrafish after acute exposure to twenty different antibiotics at a concentration of 100 ppb for 10 days. Their locomotor complexity was analyzed and compared by fractal dimension and permutation entropy analysis. The dimensionality reduction method was performed by combining the data gathered from behavioral endpoints alteration. Principal component and hierarchical analysis conclude that three antibiotics: amoxicillin, trimethoprim, and tylosin, displayed unique characteristics. The effects of these three antibiotics at lower concentrations (1 and 10 ppb) were observed in a follow-up study. Based on the results, these antibiotics can trigger several behavioral alterations in adult zebrafish, even in low doses. Significant changes in locomotor behavioral activity, such as total distance activity, average speed, rapid movement time, angular velocity, time in top/bottom duration, and meandering movement are highly related to neurological motor impairments, anxiety levels, and stress responses were observed. This study provides evidence based on an in vivo experiment to support the idea that the usage of some antibiotics should be carefully addressed since they can induce a significant effect of behavioral alterations in fish.

6.
Toxics ; 10(6)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35736944

RESUMEN

Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19-25.17 ppm) than heavy REEs (10.30-41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides' toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide's atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = -0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation's capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs' toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos.

7.
Biosensors (Basel) ; 11(11)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34821645

RESUMEN

Understanding the relationship between brain function and natural behavior remains a significant challenge in neuroscience because there are very few convincing imaging/recording tools available for the evaluation of awake and freely moving animals. Here, we employed a miniaturized head-mounted scanning photoacoustic imaging (hmPAI) system to image real-time cortical dynamics. A compact photoacoustic (PA) probe based on four in-house optical fiber pads and a single custom-made 48-MHz focused ultrasound transducer was designed to enable focused dark-field PA imaging, and miniature linear motors were included to enable two-dimensional (2D) scanning. The total dimensions and weight of the proposed hmPAI system are only approximately 50 × 64 × 48 mm and 58.7 g (excluding cables). Our ex vivo phantom experimental tests revealed that a spatial resolution of approximately 0.225 mm could be achieved at a depth of 9 mm. Our in vivo results further revealed that the diameters of cortical vessels draining into the superior sagittal sinus (SSS) could be clearly imaged and continuously observed in both anesthetized rats and awake, freely moving rats. Statistical analysis showed that the full width at half maximum (FWHM) of the PA A-line signals (relative to the blood vessel diameter) was significantly increased in the selected SSS-drained cortical vessels of awake rats (0.58 ± 0.17 mm) compared with those of anesthetized rats (0.31 ± 0.09 mm) (p < 0.01, paired t-test). In addition, the number of pixels in PA B-scan images (relative to the cerebral blood volume (CBV)) was also significantly increased in the selected SSS-drained blood vessels of awake rats (107.66 ± 23.02 pixels) compared with those of anesthetized rats (81.99 ± 21.52 pixels) (p < 0.01, paired t-test). This outcome may result from a more active brain in awake rats than in anesthetized rats, which caused cerebral blood vessels to transport more blood to meet the increased nutrient demand of the tissue, resulting in an obvious increase in blood vessel volume. This hmPAI system was further validated for utility in the brains of awake and freely moving rats, showing that their natural behavior was unimpaired during vascular imaging, thereby providing novel opportunities for studies of behavior, cognition, and preclinical models of brain diseases.


Asunto(s)
Encéfalo , Técnicas Fotoacústicas , Vigilia , Animales , Encéfalo/diagnóstico por imagen , Fibras Ópticas , Ratas
8.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34502500

RESUMEN

In this paper, we review the effects of large-scale neonicotinoid contaminations in the aquatic environment on non-target aquatic invertebrate and vertebrate species. These aquatic species are the fauna widely exposed to environmental changes and chemical accumulation in bodies of water. Neonicotinoids are insecticides that target the nicotinic type acetylcholine receptors (nAChRs) in the central nervous systems (CNS) and are considered selective neurotoxins for insects. However, studies on their physiologic impacts and interactions with non-target species are limited. In researches dedicated to exploring physiologic and toxic outcomes of neonicotinoids, studies relating to the effects on vertebrate species represent a minority case compared to invertebrate species. For aquatic species, the known effects of neonicotinoids are described in the level of organismal, behavioral, genetic and physiologic toxicities. Toxicological studies were reported based on the environment of bodies of water, temperature, salinity and several other factors. There exists a knowledge gap on the relationship between toxicity outcomes to regulatory risk valuation. It has been a general observation among studies that neonicotinoid insecticides demonstrate significant toxicity to an extensive variety of invertebrates. Comprehensive analysis of data points to a generalization that field-realistic and laboratory exposures could result in different or non-comparable results in some cases. Aquatic invertebrates perform important roles in balancing a healthy ecosystem, thus rapid screening strategies are necessary to verify physiologic and toxicological impacts. So far, much of the studies describing field tests on non-target species are inadequate and in many cases, obsolete. Considering the current literature, this review addresses important information gaps relating to the impacts of neonicotinoids on the environment and spring forward policies, avoiding adverse biological and ecological effects on a range of non-target aquatic species which might further impair the whole of the aquatic ecological web.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Insecticidas/efectos adversos , Neonicotinoides/efectos adversos , Animales , Ecosistema , Hidrobiología , Insecticidas/farmacología , Invertebrados/efectos de los fármacos , Neonicotinoides/farmacología , Neurotoxinas/farmacología , Receptores Nicotínicos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
9.
Oxid Med Cell Longev ; 2021: 7995223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336114

RESUMEN

Fullerene molecules are composed of carbon in the form of a hollow sphere, tube, or ellipsoid. Since their discovery in 1985, they have gained a lot of attention in many science fields. The unique carbon cage structure of fullerene provides immense scope for derivatization, rendering potential for various industrial applications. Thus, the prospective applications of fullerenes have led to assorted fullerene derivatives. In addition, their unique chemical structure also eases them to be synthesized through various kinds of conjugating techniques, where fullerene can be located either on the backbone or the branch chain. In this review, we have compiled the toxicity and biosafety aspects of fullerene in aquatic organisms since the frequent use of fullerene is likely to come in contact and interact with the aquatic environment and aquatic organisms. According to the current understanding, waterborne exposure to fullerene-based nanomaterials indeed triggers toxicities at cellular, organic, molecular, and neurobehavioral levels.


Asunto(s)
Fulerenos/química , Nanoestructuras/química , Animales
10.
Biosensors (Basel) ; 11(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34436064

RESUMEN

Photoacoustic (PA) imaging has become one of the major imaging methods because of its ability to record structural information and its high spatial resolution in biological tissues. Current commercialized PA imaging instruments are limited to varying degrees by their bulky size (i.e., the laser or scanning stage) or their use of complex optical components for light delivery. Here, we present a robust acoustic-resolution PA imaging system that consists of four adjustable optical fibers placed 90° apart around a 50 MHz high-frequency ultrasound (US) transducer. In the compact design concept of the PA probe, the relative illumination parameters (i.e., angles and fiber size) can be adjusted to fit different imaging applications in a single setting. Moreover, this design concept involves a user interface built in MATLAB. We first assessed the performance of our imaging system using in vitro phantom experiments. We further demonstrated the in vivo performance of the developed system in imaging (1) rat ear vasculature, (2) real-time cortical hemodynamic changes in the superior sagittal sinus (SSS) during left-forepaw electrical stimulation, and (3) real-time cerebral indocyanine green (ICG) dynamics in rats. Collectively, this alignment-free design concept of a compact PA probe without bulky optical lens systems is intended to satisfy the diverse needs in preclinical PA imaging studies.


Asunto(s)
Técnicas Fotoacústicas , Acústica , Animales , Iluminación , Fantasmas de Imagen , Ratas , Análisis Espectral
11.
Biomedicines ; 9(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916322

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype because of its high metastatic potential. Immune evasion due to aberrant expression of programmed cell death ligand 1 (PD-L1) has also been reported recently in metastatic TNBC. However, the mechanism underlying metastatic progression and PD-L1 upregulation in TNBC is still largely unknown. Here, we found that guanylate binding protein 5 (GBP5) is expressed in higher levels in TNBC tissues than in non-TNBC and normal mammary tissues and serves as a poorer prognostic marker in breast cancer patients. Transwell cultivation indicated that GBP5 expression is causally related to cellular migration ability in the detected TNBC cell lines. Moreover, the computational simulation of the gene set enrichment analysis (GSEA) program against the GBP5 signature generated from its coexpression with other somatic genes in TNBC revealed that GBP5 upregulation may be associated with the activation of interferon gamma (IFN-γ)-responsive and NF-κB-related signaling cascades. In addition, we found that the coexpression of GBP5 with PD-L1 was significantly positive correlation in TNBC tissues. Robustly, our data showed that GBP5 knockdown in TNBC cells harboring a higher GBP5 level dramatically suppresses the number of migrated cells, the activity of IFN-γ/STAT1 and TNF-α/NF-κB signaling axes, and the expression of PD-L1. Importantly, the signature combining a higher GBP5 and PD-L1 level predicted the shortest time interval of brain metastasis in breast cancer patients. These findings not only uncover the oncogenic function of GBP5 but also provide a new strategy to combat metastatic/immunosuppressive TNBC by targeting GBP5 activity.

12.
J Pers Med ; 11(3)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809079

RESUMEN

Pre-operative (neoadjuvant) or post-operative (adjuvant) taxane-based chemotherapy is still commonly used to treat patients with triple-negative breast cancer (TNBC). However, there are still no effective biomarkers used to predict the responsiveness and efficacy of taxane-based chemotherapy in TNBC patients. Here we find that guanylate-binding protein 5 (GBP5), compared to other GBPs, exhibits the strongest prognostic significance in predicting TNBC recurrence and progression. Whereas GBP5 upregulation showed no prognostic significance in non-TNBC patients, a higher GBP5 level predicted a favorable recurrence and progression-free condition in the TNBC cohort. Moreover, we found that GBP5 expression negatively correlated with the 50% inhibitory concentration (IC50) of paclitaxel in a panel of TNBC cell lines. The gene knockdown of GBP5 increased the IC50 of paclitaxel in the tested TNBC cells. In TNBC patients receiving neoadjuvant or adjuvant chemotherapy, a higher GBP5 level strongly predicted a good responsiveness. Computational simulation by the Gene Set Enrichment Analysis program and cell-based assays demonstrated that GBP5 probably enhances the cytotoxic effectiveness of paclitaxel via activating the Akt/mTOR signaling axis and suppressing autophagy formation in TNBC cells. These findings suggest that GBP5 could be a good biomarker to predict a favorable outcome in TNBC patients who decide to receive a taxane-based neoadjuvant or adjuvant therapy.

13.
Sensors (Basel) ; 21(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803265

RESUMEN

Diverse computer-aided diagnosis systems based on convolutional neural networks were applied to automate the detection of myocardial infarction (MI) found in electrocardiogram (ECG) for early diagnosis and prevention. However, issues, particularly overfitting and underfitting, were not being taken into account. In other words, it is unclear whether the network structure is too simple or complex. Toward this end, the proposed models were developed by starting with the simplest structure: a multi-lead features-concatenate narrow network (N-Net) in which only two convolutional layers were included in each lead branch. Additionally, multi-scale features-concatenate networks (MSN-Net) were also implemented where larger features were being extracted through pooling the signals. The best structure was obtained via tuning both the number of filters in the convolutional layers and the number of inputting signal scales. As a result, the N-Net reached a 95.76% accuracy in the MI detection task, whereas the MSN-Net reached an accuracy of 61.82% in the MI locating task. Both networks give a higher average accuracy and a significant difference of p < 0.001 evaluated by the U test compared with the state-of-the-art. The models are also smaller in size thus are suitable to fit in wearable devices for offline monitoring. In conclusion, testing throughout the simple and complex network structure is indispensable. However, the way of dealing with the class imbalance problem and the quality of the extracted features are yet to be discussed.


Asunto(s)
Algoritmos , Infarto del Miocardio , Diagnóstico por Computador , Electrocardiografía , Humanos , Infarto del Miocardio/diagnóstico , Redes Neurales de la Computación
14.
Environ Pollut ; 278: 116907, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33744786

RESUMEN

Graphene (GR) and graphene oxide (GO) are widely being used as promising candidates for biomedical applications, as well as for bio-sensing, drug delivery, and anticancer therapy. However, their undesirable side effects make it necessary to assess further the toxicity and safety of using these materials. The main objective of the current study was to investigate the toxicities of GR and GO in predicted environmental relevant concentrations in adult zebrafish (Danio rerio), particularly on their behaviors, and conducted biochemical assays to elucidate the possible mechanism that underlies their toxicities. Zebrafish was chronically (∼14 days) exposed to two different doses of GR (0.1 and 0.5 ppm) or GO (0.1 and 1 ppm). At 14 ± 1 days, a battery of behavioral tests was conducted, followed by enzyme-linked immunosorbent assays (ELISA) test on the following day to inspect the alterations in antioxidant activity, oxidative stress, and neurotransmitters in the treated zebrafish brain. An alteration in predator avoidance behavior was observed in all treated groups, while GR-treated fish exhibited abnormal exploratory behavior. Furthermore, altered locomotor activity was displayed by most of the treated groups, except for the high concentration of the GR group. From the ELISA results, we discovered a high concentration of GR exposure significantly decreased several neurotransmitters and cortisol levels. Meanwhile, elevated reactive oxygen species (ROS) were displayed by the group treated with low and high doses of GR and GO, respectively. These significant changes would possibly affect zebrafish behaviors and might suggest the potential toxicity from GR and GO exposures. To sum up, the present study presented new evidence for the effects of GR and GO in zebrafish behavioral dysregulation. We hope these assessments can contribute to our understanding of graphene and graphene oxide biosafety.


Asunto(s)
Grafito , Pez Cebra , Animales , Grafito/toxicidad , Estrés Oxidativo , Fenómica , Especies Reactivas de Oxígeno
15.
Sci Rep ; 11(1): 5606, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692432

RESUMEN

Whole body vibration (WBV) has been suggested to improve athletes' neuromuscular strength and power. This study investigated the effect of single WBV stimulation on volleyball-specific performance. The participants were 20 elite male volleyball players who performed a 1-min warm-up exercise on a vibration platform at a frequency of 30 Hz and peak-to-peak displacement of 2 mm. After the warm-up exercise, the participants performed a blocking agility test (BAT), 10-m sprinting test, agility T-test, and counter movement jump test. We compared the participants' performance at four time points (Pretest, Post 0, Post 1, and Post 2). The results revealed that the participants' BAT performance and maximum rate of force development improved significantly 1 min after the vibration stimulation (p < 0.01). The WBV (frequency of 30-Hz, peak-to-peak displacement of 2 mm) intervention significantly improved the volleyball-specific defensive performance and speed strength of the participants. Accordingly, by undergoing WBV as a form of warm-up exercise, the technique and physical fitness of volleyball players can be improved.


Asunto(s)
Rendimiento Atlético , Fuerza Muscular , Aptitud Física , Vibración , Voleibol , Ejercicio de Calentamiento , Adulto , Humanos , Masculino
16.
Environ Technol ; 42(25): 4038-4046, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32431226

RESUMEN

The UV-C light emitting diode (LED) has shown numerous advantages over the traditional UV mercury lamp for water sterilization applications. Multi-chip LED array was used to provide sufficient UV fluence for bacteria inactivation in limited time. According to the point light source characteristic of LEDs, the arrangement of LEDs in the batch reactor is crucial to optimize the inactivation efficiency. In this study, the inactivation of Escherichia coli (E. coli) was investigated using the 280 nm UV-C LED array. Input electrical power, chip interspace (L) and distance (D) between the reactor and water surface were analysed in terms of their effects on the inactivation of the microorganisms. An optimal inactivation efficiency of E. coli was obtained under the condition of L = D=25 mm to reach 4.0 log without using a magnetic stirrer. Additionally, the increasing rate of log inactivation of E. coli decreased with input power due to the significant decrease of wall plug efficiency of the UV-C LEDs.


Asunto(s)
Desinfección , Purificación del Agua , Escherichia coli , Rayos Ultravioleta , Agua , Microbiología del Agua
17.
Biomolecules ; 10(9)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962160

RESUMEN

Donepezil (DPZ) is an acetylcholinesterase inhibitor used for the clinical treatment of mild cognitive impairment. However, DPZ has been reported to have adverse effects, including causing abnormal cardiac rhythm, insomnia, vomiting, and muscle cramps. However, the existence of these effects in subjects without Dementia is unknown. In this study, we use zebrafish to conduct a deeper analysis of the potential adverse effects of DPZ on the short-term memory and behaviors of normal zebrafish by performing multiple behavioral and biochemical assays. Adult zebrafish were exposed to 1 ppm and 2.5 ppm of DPZ. From the results, DPZ caused a slight improvement in the short-term memory of zebrafish and induced significant elevation in aggressiveness, while the novel tank and shoaling tests revealed anxiolytic-like behavior to be caused by DPZ. Furthermore, zebrafish circadian locomotor activity displayed a higher reduction of locomotion and abnormal movement orientation in both low- and high-dose groups, compared to the control group. Biomarker assays revealed that these alterations were associated with an elevation of oxytocin and a reduction of cortisol levels in the brain. Moreover, the significant increases in reactive oxygen species (ROS) and malondialdehyde (MDA) levels in muscle tissue suggest DPZ exposure induced muscle tissue oxidative stress and muscle weakness, which may underlie the locomotor activity impairment. In conclusion, we show, for the first time, that chronic waterborne exposure to DPZ can severely induce adverse effects on normal zebrafish in a dose-dependent manner. These unexpected adverse effects on behavioral alteration should be carefully addressed in future studies considering DPZ conducted on zebrafish or other animals.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Donepezilo/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Pruebas de Toxicidad Crónica/métodos , Pez Cebra/fisiología , Animales , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Locomoción/efectos de los fármacos , Locomoción/fisiología , Malondialdehído/metabolismo , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Músculos/efectos de los fármacos , Músculos/metabolismo , Músculos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
18.
Animals (Basel) ; 10(9)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32947815

RESUMEN

Rare earth elements (REEs) or "technology metals" were coined by the U.S. Department of Energy, a group of seventeen elements found in the Earth's crust. These chemical elements are vital and irreplaceable to the world of technology owing to their unique physical, chemical, and light-emitting properties, all of which are beneficial in modern healthcare, telecommunication, and defense. Rare earth elements are relatively abundant in Earth's crust, with critical qualities to the device performance. The reuse and recycling of rare earth elements through different technologies can minimize impacts on the environment; however, there is insufficient data about their biological, bioaccumulation, and health effects. The increasing usage of rare earth elements has raised concern about environmental toxicity, which may further cause harmful effects on human health. The study aims to review the toxicity analysis of these rare earth elements concerning aquatic biota, considering it to be the sensitive indicator of the environment. Based on the limited reports of REE effects, the review highlights the need for more detailed studies on the hormetic effects of REEs. Aquatic biota is a cheap, robust, and efficient platform to study REEs' toxicity, mobility of REEs, and biomagnification in water bodies. REEs' diverse effects on aquatic life forms have been observed due to the lack of safety limits and extensive use in the various sectors. In accordance with the available data, we have put in efforts to compile all the relevant research results in this paper related to the topic "toxicity effect of REEs on aquatic life".

19.
Molecules ; 25(16)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784859

RESUMEN

Graphene and its oxide are nanomaterials considered currently to be very promising because of their great potential applications in various industries. The exceptional physiochemical properties of graphene, particularly thermal conductivity, electron mobility, high surface area, and mechanical strength, promise development of novel or enhanced technologies in industries. The diverse applications of graphene and graphene oxide (GO) include energy storage, sensors, generators, light processing, electronics, and targeted drug delivery. However, the extensive use and exposure to graphene and GO might pose a great threat to living organisms and ultimately to human health. The toxicity data of graphene and GO is still insufficient to point out its side effects to different living organisms. Their accumulation in the aquatic environment might create complex problems in aquatic food chains and aquatic habitats leading to debilitating health effects in humans. The potential toxic effects of graphene and GO are not fully understood. However, they have been reported to cause agglomeration, long-term persistence, and toxic effects penetrating cell membrane and interacting with cellular components. In this review paper, we have primarily focused on the toxic effects of graphene and GO caused on aquatic invertebrates and fish (cell line and organisms). Here, we aim to point out the current understanding and knowledge gaps of graphene and GO toxicity.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Grafito/toxicidad , Nanoestructuras/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Grafito/química , Nanoestructuras/química , Contaminantes Químicos del Agua/química
20.
Molecules ; 25(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664325

RESUMEN

The noteworthy intensification in the development of nanotechnology has led to the development of various types of nanoparticles. The diverse applications of these nanoparticles make them desirable candidate for areas such as drug delivery, coasmetics, medicine, electronics, and contrast agents for magnetic resonance imaging (MRI) and so on. Iron oxide magnetic nanoparticles are a branch of nanoparticles which is specifically being considered as a contrast agent for MRI as well as targeted drug delivery vehicles, angiogenic therapy and chemotherapy as small size gives them advantage to travel intravascular or intracavity actively for drug delivery. Besides the mentioned advantages, the toxicity of the iron oxide magnetic nanoparticles is still less explored. For in vivo applications magnetic nanoparticles should be nontoxic and compatible with the body fluids. These particles tend to degrade in the body hence there is a need to understand the toxicity of the particles as whole and degraded products interacting within the body. Some nanoparticles have demonstrated toxic effects such inflammation, ulceration, and decreases in growth rate, decline in viability and triggering of neurobehavioral alterations in plants and cell lines as well as in animal models. The cause of nanoparticles' toxicity is attributed to their specific characteristics of great surface to volume ratio, chemical composition, size, and dosage, retention in body, immunogenicity, organ specific toxicity, breakdown and elimination from the body. In the current review paper, we aim to sum up the current knowledge on the toxic effects of different magnetic nanoparticles on cell lines, marine organisms and rodents. We believe that the comprehensive data can provide significant study parameters and recent developments in the field. Thereafter, collecting profound knowledge on the background of the subject matter, will contribute to drive research in this field in a new sustainable direction.


Asunto(s)
Compuestos Férricos/toxicidad , Nanopartículas de Magnetita/toxicidad , Animales , Sistemas de Liberación de Medicamentos/efectos adversos , Humanos , Imagen por Resonancia Magnética/métodos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...