Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 743
Filtrar
1.
Alzheimers Dement ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958117

RESUMEN

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, P = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at P < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.

2.
Pediatr Blood Cancer ; : e31143, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924670

RESUMEN

ChatGPT and other artificial intelligence (AI) systems have captivated the attention of healthcare providers and researchers for their potential to improve care processes and outcomes. While these technologies hold promise to automate processes, increase efficiency, and reduce cognitive burden, their use also carries risks. In this commentary, we review basic concepts of AI, outline some of the capabilities and limitations of currently available tools, discuss current and future applications in pediatric hematology/oncology, and provide an evaluation and implementation framework that can be used by pediatric hematologist/oncologists considering the use of AI in clinical practice.

3.
Cell Host Microbe ; 32(6): 837-851, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38870900

RESUMEN

Antibiotic resistance (AMR) is a global public health threat, challenging the effectiveness of antibiotics in combating bacterial infections. AMR also represents one of the most crucial survival traits evolved by bacteria. Antibiotics emerged hundreds of millions of years ago as advantageous secondary metabolites produced by microbes. Consequently, AMR is equally ancient and hardwired into the genetic fabric of bacteria. Human use of antibiotics for disease treatment has created selection pressure that spurs the evolution of new resistance mechanisms and the mobilization of existing ones through bacterial populations in the environment, animals, and humans. This integrated web of resistance elements is genetically complex and mechanistically diverse. Addressing this mode of bacterial survival requires innovation and investment to ensure continued use of antibiotics in the future. Strategies ranging from developing new therapies to applying artificial intelligence in monitoring AMR and discovering new drugs are being applied to manage the growing AMR crisis.


Asunto(s)
Antibacterianos , Bacterias , Infecciones Bacterianas , Farmacorresistencia Bacteriana , Salud Pública , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Humanos , Animales , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Farmacorresistencia Microbiana
4.
J Neuroimmune Pharmacol ; 19(1): 25, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38789639

RESUMEN

Based on emerging evidence on the role for specific single-nucleotide variants (SNVs) in EIF2AK3 encoding the integrated stress response kinase PERK, in neurodegeneration, we assessed the association of EIF2AK3 SNVs with neurocognitive performance in people with HIV (PWH) using a candidate gene approach. This retrospective study included the CHARTER cohort participants, excluding those with severe neuropsychiatric comorbidities. Genome-wide data previously obtained for 1047 participants and targeted sequencing of 992 participants with available genomic DNA were utilized to interrogate the association of three noncoding and three coding EIF2AK3 SNVs with the continuous global deficit score (GDS) and global neurocognitive impairment (NCI; GDS ≥ 0.5) using univariable and multivariable methods, with demographic, disease-associated, and treatment characteristics as covariates. The cohort characteristics were as follows: median age, 43.1 years; females, 22.8%; European ancestry, 41%; median CD4 + T cell counts, 175/µL (nadir) and 428/µL (current). At first assessment, 70.5% used ART and 68.3% of these had plasma HIV RNA levels ≤ 200 copies/mL. All three noncoding EIF2AK3 SNVs were associated with GDS and NCI (all p < 0.05). Additionally, 30.9%, 30.9%, and 41.2% of participants had at least one risk allele for the coding SNVs rs1805165 (G), rs867529 (G), and rs13045 (A), respectively. Homozygosity for all three coding SNVs was associated with significantly worse GDS (p < 0.001) and more NCI (p < 0.001). By multivariable analysis, the rs13045 A risk allele, current ART use, and Beck Depression Inventory-II value > 13 were independently associated with GDS and NCI (p < 0.001) whereas the other two coding SNVs did not significantly correlate with GDS or NCI after including rs13045 in the model. The coding EIF2AK3 SNVs were associated with worse performance in executive functioning, motor functioning, learning, and verbal fluency. Coding and non-coding SNVs of EIF2AK3 were associated with global NC and domain-specific performance. The effects were small-to-medium in size but present in multivariable analyses, raising the possibility of specific SNVs in EIF2AK3 as an important component of genetic vulnerability to neurocognitive complications in PWH.


Asunto(s)
Infecciones por VIH , Polimorfismo de Nucleótido Simple , eIF-2 Quinasa , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Disfunción Cognitiva/genética , Estudios de Cohortes , eIF-2 Quinasa/genética , Infecciones por VIH/genética , Infecciones por VIH/complicaciones , Infecciones por VIH/psicología , Polimorfismo de Nucleótido Simple/genética , Estudios Retrospectivos
5.
Nat Commun ; 15(1): 4036, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740750

RESUMEN

Microbial Ni2+ homeostasis underpins the virulence of several clinical pathogens. Ni2+ is an essential cofactor in urease and [NiFe]-hydrogenases involved in colonization and persistence. Many microbes produce metallophores to sequester metals necessary for their metabolism and starve competing neighboring organisms. The fungal metallophore aspergillomarasmine A (AMA) shows narrow specificity for Zn2+, Ni2+, and Co2+. Here, we show that this specificity allows AMA to block the uptake of Ni2+ and attenuate bacterial Ni-dependent enzymes, offering a potential strategy for reducing virulence. Bacterial exposure to AMA perturbs H2 metabolism, ureolysis, struvite crystallization, and biofilm formation and shows efficacy in a Galleria mellonella animal infection model. The inhibition of Ni-dependent enzymes was aided by Zn2+, which complexes with AMA and competes with the native nickelophore for the uptake of Ni2+. Biochemical analyses demonstrated high-affinity binding of AMA-metal complexes to NikA, the periplasmic substrate-binding protein of the Ni2+ uptake system. Structural examination of NikA in complex with Ni-AMA revealed that the coordination geometry of Ni-AMA mimics the native ligand, Ni-(L-His)2, providing a structural basis for binding AMA-metal complexes. Structure-activity relationship studies of AMA identified regions of the molecule that improve NikA affinity and offer potential routes for further developing this compound as an anti-virulence agent.


Asunto(s)
Proteínas Bacterianas , Níquel , Níquel/metabolismo , Níquel/química , Animales , Virulencia/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Zinc/metabolismo , Zinc/química , Mariposas Nocturnas/microbiología , Ureasa/metabolismo , Ureasa/antagonistas & inhibidores , Transporte Biológico
6.
J Alzheimers Dis Rep ; 8(1): 575-587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746629

RESUMEN

Background: Mitochondrial DNA (mtDNA) is a double-stranded circular DNA and has multiple copies in each cell. Excess heteroplasmy, the coexistence of distinct variants in copies of mtDNA within a cell, may lead to mitochondrial impairments. Accurate determination of heteroplasmy in whole-genome sequencing (WGS) data has posed a significant challenge because mitochondria carrying heteroplasmic variants cannot be distinguished during library preparation. Moreover, sequencing errors, contamination, and nuclear mtDNA segments can reduce the accuracy of heteroplasmic variant calling. Objective: To efficiently and accurately call mtDNA homoplasmic and heteroplasmic variants from the large-scale WGS data generated from the Alzheimer's Disease Sequencing Project (ADSP), and test their association with Alzheimer's disease (AD). Methods: In this study, we present MitoH3-a comprehensive computational pipeline for calling mtDNA homoplasmic and heteroplasmic variants and inferring haplogroups in the ADSP WGS data. We first applied MitoH3 to 45 technical replicates from 6 subjects to define a threshold for detecting heteroplasmic variants. Then using the threshold of 5% ≤variant allele fraction≤95%, we further applied MitoH3 to call heteroplasmic variants from a total of 16,113 DNA samples with 6,742 samples from cognitively normal controls and 6,183 from AD cases. Results: This pipeline is available through the Singularity container engine. For 4,311 heteroplasmic variants identified from 16,113 samples, no significant variant count difference was observed between AD cases and controls. Conclusions: Our streamlined pipeline, MitoH3, enables computationally efficient and accurate analysis of a large number of samples.

7.
Urology ; 187: 125-130, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432430

RESUMEN

OBJECTIVE: To create a society position statement on common adjunct penile prosthesis (PP) procedures. While the Medicare Current Procedural Terminology code book lists descriptions of procedures, it is very brief and lacks detail in the small subspecialty of prosthetic urology. At educational/research meetings, wide variation was found in how experts in prosthetic urology code the same procedures, and need for a standardized format in billing common ancillary surgery was voiced. METHODS: A subcommittee within the Society of Urologic Prosthetic Surgeons developed a survey assessing coding options for several procedures commonly adjunct to PP placement, which was distributed in the fall of 2022. The results of the survey were used to develop consensus statements on coding adjunct PP procedures; statements were distributed among society membership and meetings for approval. RESULTS: Thirty members replied to the survey; demographics were obtained as follows: 73% were trained in a fellowship, 50% identified as university/academic practitioners, and 50% in community/private practice; and 63% respondents place more than 50 implants annually. Only 1 of the 30 respondents stated confidence in coding for these ancillary procedures. Specifically, differences in how to code curvature correction procedures were observed throughout the survey results. CONCLUSION: Only 1 in 30 prosthetic urologists expressed confidence in coding and billing of adjunct PP procedures, further confirming the need for a society position statement. Therefore, we generated a consensus society position statement on common surgeries that are adjunct to PP placement.


Asunto(s)
Implantación de Pene , Prótesis de Pene , Sociedades Médicas , Urología , Masculino , Humanos , Estados Unidos , Codificación Clínica/normas , Encuestas y Cuestionarios
8.
Nanotechnology ; 35(36)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38537254

RESUMEN

We investigate the photon statistics of the light emitted by single self-assembled hybrid gold-CdSe/CdS/CdZnS colloidal nanocrystal supraparticles through the detailed analysis of the intensity autocorrelation functiong(2)(τ). We first reveal that, despite the large number of nanocrystals involved in the supraparticle emission, antibunching can be observed. We then present a model based on non-coherent Förster energy transfer and Auger recombination that well captures photon antibunching. Finally, we demonstrate that some supraparticles exhibit a bunching effect at short time scales corresponding to coherent collective emission.

9.
Acta Neuropathol ; 147(1): 55, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472475

RESUMEN

Inclusions comprised of microtubule-associated protein tau (tau) are implicated in a group of neurodegenerative diseases, collectively known as tauopathies, that include Alzheimer's disease (AD). The spreading of misfolded tau "seeds" along neuronal networks is thought to play a crucial role in the progression of tau pathology. Consequently, restricting the release or uptake of tau seeds may inhibit the spread of tau pathology and potentially halt the advancement of the disease. Previous studies have demonstrated that the Mammalian Suppressor of Tauopathy 2 (MSUT2), an RNA binding protein, modulates tau pathogenesis in a transgenic mouse model. In this study, we investigated the impact of MSUT2 on tau pathogenesis using tau seeding models. Our findings indicate that the loss of MSUT2 mitigates human tau seed-induced pathology in neuron cultures and mouse models. In addition, MSUT2 regulates many gene transcripts, including the Adenosine Receptor 1 (A1AR), and we show that down regulation or inhibition of A1AR modulates the activity of the "ArfGAP with SH3 Domain, Ankyrin Repeat, and PH Domain 1 protein" (ASAP1), thereby influencing the internalization of pathogenic tau seeds into neurons resulting in reduction of tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Humanos , Animales , Encéfalo/patología , Proteínas tau/metabolismo , Tauopatías/patología , Enfermedad de Alzheimer/patología , Neuronas/patología , Ratones Transgénicos , Mamíferos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
10.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38405782

RESUMEN

India has been underrepresented in whole genome sequencing studies. We generated 2,762 high coverage genomes from India-including individuals from most geographic regions, speakers of all major languages, and tribal and caste groups-providing a comprehensive survey of genetic variation in India. With these data, we reconstruct the evolutionary history of India through space and time at fine scales. We show that most Indians derive ancestry from three ancestral groups related to ancient Iranian farmers, Eurasian Steppe pastoralists and South Asian hunter-gatherers. We uncover a common source of Iranian-related ancestry from early Neolithic cultures of Central Asia into the ancestors of Ancestral South Indians (ASI), Ancestral North Indians (ANI), Austro-asiatic-related and East Asian-related groups in India. Following these admixtures, India experienced a major demographic shift towards endogamy, resulting in extensive homozygosity and identity-by-descent sharing among individuals. At deep time scales, Indians derive around 1-2% of their ancestry from gene flow from archaic hominins, Neanderthals and Denisovans. By assembling the surviving fragments of archaic ancestry in modern Indians, we recover ~1.5 Gb (or 50%) of the introgressing Neanderthal and ~0.6 Gb (or 20%) of the introgressing Denisovan genomes, more than any other previous archaic ancestry study. Moreover, Indians have the largest variation in Neanderthal ancestry, as well as the highest amount of population-specific Neanderthal segments among worldwide groups. Finally, we demonstrate that most of the genetic variation in Indians stems from a single major migration out of Africa that occurred around 50,000 years ago, with minimal contribution from earlier migration waves. Together, these analyses provide a detailed view of the population history of India and underscore the value of expanding genomic surveys to diverse groups outside Europe.

11.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38418088

RESUMEN

Detecting structural variants (SVs) in whole-genome sequencing poses significant challenges. We present a protocol for variant calling, merging, genotyping, sensitivity analysis, and laboratory validation for generating a high-quality SV call set in whole-genome sequencing from the Alzheimer's Disease Sequencing Project comprising 578 individuals from 111 families. Employing two complementary pipelines, Scalpel and Parliament, for SV/indel calling, we assessed sensitivity through sample replicates (N = 9) with in silico variant spike-ins. We developed a novel metric, D-score, to evaluate caller specificity for deletions. The accuracy of deletions was evaluated by Sanger sequencing. We generated a high-quality call set of 152,301 deletions of diverse sizes. Sanger sequencing validated 114 of 146 detected deletions (78.1%). Scalpel excelled in accuracy for deletions ≤100 bp, whereas Parliament was optimal for deletions >900 bp. Overall, 83.0% and 72.5% of calls by Scalpel and Parliament were validated, respectively, including all 11 deletions called by both Parliament and Scalpel between 101 and 900 bp. Our flexible protocol successfully generated a high-quality deletion call set and a truth set of Sanger sequencing-validated deletions with precise breakpoints spanning 1-17,000 bp.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Secuenciación Completa del Genoma/métodos
12.
Cell Chem Biol ; 31(4): 760-775.e17, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38402621

RESUMEN

Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.


Asunto(s)
Aminoacil-ARNt Sintetasas , Antifúngicos , Animales , Ratones , Antifúngicos/farmacología , Aminoacil-ARNt Sintetasas/genética , Candida albicans , Relación Estructura-Actividad
13.
Obes Surg ; 34(4): 1224-1231, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38379059

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is one of the leading indications for liver transplantation (LT) in the United States. As with the current obesity epidemic, the incidence of NASH continues to rise. However, the impact of broad utilization of bariatric surgery (BS) for patients with NASH is unknown, particularly in regard to mitigating the need for LT. METHODS: Markov decision analysis was performed to simulate the lives of 20,000 patients with obesity and concomitant NASH who were deemed ineligible to be waitlisted for LT unless they achieved a body mass index (BMI) < 35 kg/m2. Life expectancy following medical weight management (MWM) and sleeve gastrectomy (SG) were estimated. Base case patients were defined as having NASH without fibrosis and a pre-intervention BMI of 45 kg/m2. Sensitivity analysis of initial BMI was performed. RESULTS: Simulated base case analysis patients who underwent SG gained 14.3 years of life compared to patients who underwent MWM. One year after weight loss intervention, 9% of simulated MWM patients required LT compared to only 5% of SG patients. Survival benefit for SG was observed above a BMI of 32.2 kg/m2. CONCLUSION: In this predictive model of 20,000 patients with obesity and concomitant NASH, surgical weight loss is associated with a reduction in the progression of NASH, thereby reducing the need for LT. A reduced BMI threshold of 32 kg/m2 for BS may offer survival benefit for patients with obesity and NASH.


Asunto(s)
Trasplante de Hígado , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Obesidad Mórbida/cirugía , Obesidad/cirugía , Pérdida de Peso , Gastrectomía , Resultado del Tratamiento
14.
J Infect Dis ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38298144

RESUMEN

BACKGROUND: Macrolide antibiotics, including azithromycin, can reduce under-five mortality rates and treat various infections in children in sub-Saharan Africa. These exposures, however, can select for antibiotic-resistant bacteria in the gut microbiota. METHODS: Our previous randomized controlled trial (RCT) of a rapid-test-and-treat strategy for severe acute diarrhoeal disease in children in Botswana included an intervention (three-day azithromycin dose) group and a control group that received supportive treatment. In this prospective matched cohort study using stools collected at baseline and 60 days after treatment from RCT participants, the collection of antibiotic resistance genes or resistome was compared between groups. RESULTS: Certain macrolide resistance genes increased in prevalence by 13% to 55% at 60 days, without differences in gene presence between the intervention and control groups. These genes were linked to tetracycline resistance genes and mobile genetic elements. CONCLUSIONS: Azithromycin treatment for bacterial diarrhoea for young children in Botswana resulted in similar effects on the gut resistome as the supportive treatment and did not provide additional selective pressure for macrolide resistance gene maintenance. The gut microbiota of these children contains diverse macrolide resistance genes that may be transferred within the gut upon repeated exposures to azithromycin or co-selected by other antibiotics.

15.
medRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38293024

RESUMEN

The prevalence of dementia among South Asians across India is approximately 7.4% in those 60 years and older, yet little is known about genetic risk factors for dementia in this population. Most known risk loci for Alzheimer's disease (AD) have been identified from studies conducted in European Ancestry (EA) but are unknown in South Asians. Using whole-genome sequence data from 2680 participants from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD), we performed a gene-based analysis of 84 genes previously associated with AD in EA. We investigated associations with the Hindi Mental State Examination (HMSE) score and factor scores for general cognitive function and five cognitive domains. For each gene, we examined missense/loss-of-function (LoF) variants and brain-specific promoter/enhancer variants, separately, both with and without incorporating additional annotation weights (e.g., deleteriousness, conservation scores) using the variant-Set Test for Association using Annotation infoRmation (STAAR). In the missense/LoF analysis without annotation weights and controlling for age, sex, state/territory, and genetic ancestry, three genes had an association with at least one measure of cognitive function (FDR q<0.1). APOE was associated with four measures of cognitive function, PICALM was associated with HMSE score, and TSPOAP1 was associated with executive function. The most strongly associated variants in each gene were rs429358 (APOE ε4), rs779406084 (PICALM), and rs9913145 (TSPOAP1). rs779406084 is a rare missense mutation that is more prevalent in LASI-DAD than in EA (minor allele frequency=0.075% vs. 0.0015%); the other two are common variants. No genes in the brain-specific promoter/enhancer analysis met criteria for significance. Results with and without annotation weights were similar. Missense/LoF variants in some genes previously associated with AD in EA are associated with measures of cognitive function in South Asians from India. Analyzing genome sequence data allows identification of potential novel causal variants enriched in South Asians.

16.
Ann Neurol ; 95(4): 625-634, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180638

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder and one of the leading causes of disability worldwide. The apolipoprotein E4 gene (APOE4) is the strongest genetic risk factor for AD. In 2023, the APOE4 National Institute on Aging/Alzheimer's Disease Sequencing Project working group came together to gather data and discuss the question of whether to reduce or increase APOE4 as a therapeutic intervention for AD. It was the unanimous consensus that cumulative data from multiple studies in humans and animal models support that lowering APOE4 should be a target for therapeutic approaches for APOE4 carriers. ANN NEUROL 2024;95:625-634.


Asunto(s)
Enfermedad de Alzheimer , Animales , Estados Unidos , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/tratamiento farmacológico , Apolipoproteína E4/genética , Objetivos , National Institute on Aging (U.S.)
17.
Nat Commun ; 15(1): 684, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263370

RESUMEN

The heterogeneity of the whole-exome sequencing (WES) data generation methods present a challenge to a joint analysis. Here we present a bioinformatics strategy for joint-calling 20,504 WES samples collected across nine studies and sequenced using ten capture kits in fourteen sequencing centers in the Alzheimer's Disease Sequencing Project. The joint-genotype called variant-called format (VCF) file contains only positions within the union of capture kits. The VCF was then processed specifically to account for the batch effects arising from the use of different capture kits from different studies. We identified 8.2 million autosomal variants. 96.82% of the variants are high-quality, and are located in 28,579 Ensembl transcripts. 41% of the variants are intronic and 1.8% of the variants are with CADD > 30, indicating they are of high predicted pathogenicity. Here we show our new strategy can generate high-quality data from processing these diversely generated WES samples. The improved ability to combine data sequenced in different batches benefits the whole genomics research community.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Exoma , Biología Computacional , Exactitud de los Datos , Genotipo
18.
Nat Chem Biol ; 20(2): 234-242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37973888

RESUMEN

The efficacy of aminoglycoside antibiotics is waning due to the acquisition of diverse resistance mechanisms by bacteria. Among the most prevalent are aminoglycoside acetyltransferases (AACs) that inactivate the antibiotics through acetyl coenzyme A-mediated modification. Most AACs are members of the GCN5 superfamily of acyltransferases which lack conserved active site residues that participate in catalysis. ApmA is the first reported AAC belonging to the left-handed ß-helix superfamily. These enzymes are characterized by an essential active site histidine that acts as an active site base. Here we show that ApmA confers broad-spectrum aminoglycoside resistance with a molecular mechanism that diverges from other detoxifying left-handed ß-helix superfamily enzymes and canonical GCN5 AACs. We find that the active site histidine plays different functions depending on the acetyl-accepting aminoglycoside substrate. This flexibility in the mechanism of a single enzyme underscores the plasticity of antibiotic resistance elements to co-opt protein catalysts in the evolution of drug detoxification.


Asunto(s)
Aminoglicósidos , Histidina , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Bacterias/metabolismo
20.
Alzheimers Dement ; 20(2): 1250-1267, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984853

RESUMEN

BACKGROUND: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales  = 11,942; Nfemales  = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Cognitivo , Humanos , Masculino , Femenino , Estudio de Asociación del Genoma Completo , Enfermedad de Alzheimer/genética , Cognición , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...