Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37761628

RESUMEN

Phase diagrams are powerful tools to understand the multi-scale behaviour of complex systems. Yet, their determination requires in practice both experiments and computations, which quickly becomes a daunting task. Here, we propose a geometrical approach to simplify the numerical computation of liquid-liquid ternary phase diagrams. We show that using the intrinsic geometry of the binodal curve, it is possible to formulate the problem as a simple set of ordinary differential equations in an extended 4D space. Consequently, if the thermodynamic potential, such as Gibbs free energy, is known from an experimental data set, the whole phase diagram, including the spinodal curve, can be easily computed. We showcase this approach on four ternary liquid-liquid diagrams, with different topological properties, using a modified Flory-Huggins model. We demonstrate that our method leads to similar or better results comparing those obtained with other methods, but with a much simpler procedure. Acknowledging and using the intrinsic geometry of phase diagrams thus appears as a promising way to further develop the computation of multiphase diagrams.

2.
Bioinspir Biomim ; 17(3)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35081515

RESUMEN

The field encompassing biomimetics, bioinspiration and nature inspiration in engineering science is growing steadily, pushed by exogenous factors like the search for potentially sustainable engineering solutions that might already exist in nature. With the help of information provided by a bibliometric database and further processed with a dynamic network and semantic analysis tool, we provide insight at two scales into the corpus of nature-inspired engineering field and its dynamics. At the macroscale, the Web of Science®(WoS) categories, countries and institutions are ranked and ordered by thematic clusters and country networks, highlighting the leading countries and institutions and how they focus on specific topics. Such an insight provides an overview at the macroscale that can be valuable to orient scientific strategy at the country level. At the mesoscale, where science is incarnated by collaborative networks of authors and institutions that run across countries, we identify six semantic clusters and subclusters within them, and their dynamics. We also pinpoint leading academic collaborative networks and their activity in relation to the six semantic clusters. Trends and prospective are also discussed. Typically, one observes that the field is becoming mature since, starting by imitating nature, it proceeded with mimicking more complex natural structures and functions and now it investigates ways used in nature in response to changes in the environment and implements them in innovative and adaptive artefacts. The sophistication of devices, methods and tools has been increasing over the years as well as their functionalities and adaptability, whereas the size of devices has decreased at the same time.


Asunto(s)
Bibliometría , Biomimética , Biomimética/métodos , Ingeniería , Estudios Prospectivos
3.
Phys Chem Chem Phys ; 21(19): 10114-10124, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31062788

RESUMEN

We show that the solvent behaviour in both diffusio-osmosis and Marangoni flow can be derived from a simple model of colloid-interface interactions. We demonstrate that the direction of the flow is regulated by a single value of the attractive parameter covering the purely repulsive and attractive-repulsive interaction cases. The proposed universality between diffusio-osmosis and Marangoni flow is extended further to include diffusio-phoresis. In particular, an object immersed to a colloidal solution moves towards the low concentration of the colloidal particles in the case of colloid-interface repulsion and towards the high concentration of the colloidal particles in the case of colloid-interface attraction. The approach combines the methods of fluid dynamics, molecular physics and transport phenomena and provides a tractable explanation of how the colloid-interface interactions affect the momentum balance and the transport phenomena (interfacially driven transport).

4.
J Chem Inf Model ; 57(12): 2986-2995, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29091426

RESUMEN

The efficiency of four modeling approaches, namely, group contributions, corresponding-states principle, σ-moment-based neural networks, and graph machines, are compared for the estimation of the surface tension (ST) of 269 pure liquid compounds at 25 °C from their molecular structure. This study focuses on liquids containing only carbon, oxygen, hydrogen, or silicon atoms since our purpose is to predict the surface tension of cosmetic oils. Neural network estimations are performed from σ-moment descriptors as defined in the COSMO-RS model, while methods based on group contributions, corresponding-states principle, and graph machines use 2D molecular information (SMILES codes). The graph machine approach provides the best results, estimating the surface tensions of 23 cosmetic oils, such as hemisqualane, isopropyl myristate, or decamethylcyclopentasiloxane (D5), with accuracy better than 1 mN·m-1. A demonstration of the graph machine model using the recent Docker technology is available for download in the Supporting Information.


Asunto(s)
Cosméticos/química , Miristatos/química , Aceites/química , Siloxanos/química , Escualeno/análogos & derivados , Simulación por Computador , Modelos Químicos , Modelos Moleculares , Redes Neurales de la Computación , Escualeno/química , Tensión Superficial , Temperatura
5.
J Hazard Mater ; 177(1-3): 1093-101, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20116168

RESUMEN

Flash point is the most important variable employed to characterize fire and explosion hazard of liquids. The models developed for predicting the flash point of partially miscible mixtures in the literature to date are all based on the assumption of liquid-liquid equilibrium. In real-world environments, however, the liquid-liquid equilibrium assumption does not always hold, such as the collection or accumulation of waste solvents without stirring, where complete stirring for a period of time is usually used to ensure the liquid phases being in equilibrium. This study investigated the effect of stirring on the flash-point behavior of binary partially miscible mixtures. Two series of partially miscible binary mixtures were employed to elucidate the effect of stirring. The first series was aqueous-organic mixtures, including water+1-butanol, water+2-butanol, water+isobutanol, water+1-pentanol, and water+octane; the second series was the mixtures of two flammable solvents, which included methanol+decane, methanol+2,2,4-trimethylpentane, and methanol+octane. Results reveal that for binary aqueous-organic solutions the flash-point values of unstirred mixtures were located between those of the completely stirred mixtures and those of the flammable component. Therefore, risk assessment could be done based on the flammable component flash-point value. However, for the assurance of safety, it is suggested to completely stir those mixtures before handling to reduce the risk.


Asunto(s)
Seguridad , Solventes/química , Contaminantes Ambientales , Explosiones , Incendios
6.
J Mol Model ; 14(7): 571-80, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18478282

RESUMEN

An extension of the anisotropic united atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (-C[triple bound] N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile.


Asunto(s)
Modelos Moleculares , Nitrilos/química , Anisotropía , Simulación por Computador , Modelos Químicos , Conformación Molecular , Peso Molecular , Método de Montecarlo , Electricidad Estática , Termodinámica , Volatilización
7.
J Hazard Mater ; 153(3): 1165-75, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-17981391

RESUMEN

Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of flammable solvents. To confirm the predictive efficacy of the derived flash points, the model was verified by comparing the predicted values with the experimental data for the studied mixtures: methanol+octane; methanol+decane; acetone+decane; methanol+2,2,4-trimethylpentane; and, ethanol+tetradecane. Our results reveal that immiscibility in the two liquid phases should not be ignored in the prediction of flash point. Overall, the predictive results of this proposed model describe the experimental data well. Based on this evidence, therefore, it appears reasonable to suggest potential application for our model in assessment of fire and explosion hazards, and development of inherently safer designs for chemical processes containing binary partially miscible mixtures of flammable solvents.


Asunto(s)
Sustancias Peligrosas , Modelos Químicos , Solventes/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...