Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38066692

RESUMEN

AIMS: Diets and parasites influence the gut bacterial symbionts of bumble bees, but potential interactive effects remain overlooked. The main objective of this study was to assess the isolated and interactive effects of sunflower pollen, its phenolamides, and the widespread trypanosomatid Crithidia sp. on the gut bacterial symbionts of Bombus terrestris males. METHODS AND RESULTS: Bumble bee males emerged in microcolonies fed on either (i) willow pollen (control), (ii) sunflower pollen, or (iii) willow pollen spiked with phenolamide extracts from sunflower pollen. These microcolonies were infected by Crithidia sp. or were pathogen-free. Using 16S rRNA amplicon sequencing (V3-V4 region), we observed a significant alteration of the beta diversity but not of the alpha diversity in the gut microbial communities of males fed on sunflower pollen compared to males fed on control pollen. Similarly, infection by the gut parasite Crithidia sp. altered the beta diversity but not the alpha diversity in the gut microbial communities of males, irrespective of the diet. By contrast, we did not observe any significant alteration of the beta or alpha diversity in the gut microbial communities of males fed on phenolamide-enriched pollen compared to males fed on control pollen. Changes in the beta diversity indicate significant dissimilarities of the bacterial taxa between the treatment groups, while the lack of difference in alpha diversity demonstrates no significant changes within each treatment group. CONCLUSIONS: Bumble bees harbour consistent gut microbiota worldwide, but our results suggest that the gut bacterial communities of bumble bees are somewhat shaped by their diets and gut parasites as well as by the interaction of these two factors. This study confirms that bumble bees are suitable biological surrogates to assess the effect of diet and parasite infections on gut microbial communities.


Asunto(s)
Microbiota , Parásitos , Abejas , Animales , Parásitos/genética , ARN Ribosómico 16S/genética , Crithidia/genética , Dieta , Bacterias
2.
Chemistry ; 29(70): e202303168, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37796081

RESUMEN

Storing solar energy is a key challenge in modern science. MOlecular Solar Thermal (MOST) systems, in particular those based on azobenzene switches, have received great interest in the last decades. The energy storage properties of azobenzene (t1/2 <4 days; ΔH~270 kJ/kg) must be improved for future applications. Herein, we introduce peptoids as programmable supramolecular scaffolds to improve the energy storage properties of azobenzene-based MOST systems. We demonstrate with 3-unit peptoids bearing a single azobenzene chromophore that dynamics of the MOST systems can be tuned depending on the anchoring position of the photochromic unit on the macromolecular backbone. We measured a remarkable increase of the half-life of the metastable form up to 14 days at 20 °C for a specific anchoring site, significantly higher than the isolated azobenzene moiety, thus opening new perspectives for MOST development. We also highlight that liquid chromatography coupled to mass spectrometry does not only enable to monitor the different stereoisomers during the photoisomerization process as traditionally done, but also allows to determine the thermal back-isomerization kinetics.

3.
Sci Rep ; 13(1): 12674, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542089

RESUMEN

In marine environments, host selection, defining how symbiotic organisms recognize and interact with their hosts, is often mediated by olfactory communication. Although adult symbionts may select their hosts detecting chemosensory cues, no information is available concerning the recruitment of symbiotic larvae which is a crucial step to sustain symbioses over generations. This study investigates the olfactory recognition of seastar hosts by adult Zenopontonia soror shrimps and the recruitment of their larvae. We examine the semiochemicals that influence host selection using chemical extractions, behavioural experiments in olfactometers, and mass spectrometry analyses. After describing the symbiotic population and the embryonic development of shrimps, our results demonstrate that asterosaponins, which are traditionally considered as chemical defences in seastars, are species-specific and play a role in attracting the symbiotic shrimps. Adult shrimps were found to be attracted only by their original host species Culcita novaeguineae, while larvae were attracted by different species of seastars. This study provides the first chemical identification of an olfactory cue used by larvae of symbiotic organisms to locate their host for recruitment. These findings highlight the importance of chemical communication in the mediation of symbiotic associations, which has broader significant implications for understanding the ecological dynamics of marine ecosystems.


Asunto(s)
Decápodos , Palaemonidae , Animales , Larva , Ecosistema , Olfato , Simbiosis
4.
Chem Commun (Camb) ; 59(41): 6243-6246, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37132471

RESUMEN

The lacunary monocharged anion [{Mo6Cli8}Cla5□a]- presents concomitantly a strongly electrophilic site and a nucleophilic one. This Janus character in terms of reactivity is confirmed by its gas phase reaction with [Br6Cs4K]- to form [{Mo6Cli8}Cla5Bra]2- and by its unusual self-reactivity leading to [{Mo6Cli8}Cla6]2- dianions.

5.
J Nat Prod ; 86(5): 1274-1283, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37133415

RESUMEN

Phenolamides are abundant specialized metabolites found in nature and consist of hydroxycinnamic acids mono- or polyconjugated with polyamines. Their participation in flower development is well-documented, and their presence in pollen raises the question of their role in pollen/pollinator interactions. The structural characterization of phenolamides is complicated by the presence of positional isomers and stereoisomers. Liquid chromatography coupled to tandem mass spectrometry in the positive ionization mode is becoming very popular in phenolamide structural characterization. However, collision-induced transamidation processes that cause the swapping of side chains have been detected, making it difficult to distinguish regioisomers with this technique. In the present report, we explore the dissociation processes undergone by the [M - H]- ions of spermidine-based phenolamides as model compounds. We describe two original competitive dissociation routes, namely, the phenolate and imidate pathways, to account for the observed fragmentation reactions undergone by collisional activated standard phenolamide anions. Whereas the phenolate pathway is regioselective at the central position for spermidine, the imidate pathway, requiring a deprotonated amide, only occurs at the extremities. Tandem mass spectrometry experiments on negatively charged phenolamide ions may then outperform their positive ionization mode counterparts for the distinction between phenolamide regioisomers and globally for the identification of phenolamides in natural extracts.


Asunto(s)
Espermidina , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Iones , Cromatografía Liquida , Imidoésteres , Espectrometría de Masa por Ionización de Electrospray/métodos
6.
Soft Matter ; 19(21): 3794-3802, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37191181

RESUMEN

This study aims to determine the influence of the dispersity on the aggregation of conjugated polymers and their subsequent chiral expression. Dispersity has been thoroughly investigated for industrial polymerizations, but research on conjugated polymers is lacking. Nonetheless, knowledge thereof is crucial for controlling the aggregation type (type I versus type II) and its influence is therefore investigated. For that purpose, a series of polymers is synthesized via metered initiator addition, resulting in dispersities ranging from 1.18-1.56. The lower dispersity polymers yield type II aggregates and the resulting symmetrical electronic circular dichroism (ECD) spectra while the higher dispersity polymers are predominantly type I due to the longer chains effectively acting as a seed and therefore yield asymmetrical ECD spectra. Furthermore, a monomodal and bimodal molar mass distribution of similar dispersity are compared, demonstrating that bimodal distributions show both aggregation types and therefore more disorder, leading to a decrease in chiral expression.

7.
Molecules ; 28(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903330

RESUMEN

Escins constitute an abundant family of saponins (saponosides) and are the most active components in Aesculum hippocastanum (horse chestnut-HC) seeds. They are of great pharmaceutical interest as a short-term treatment for venous insufficiency. Numerous escin congeners (slightly different compositions), as well as numerous regio-and stereo-isomers, are extractable from HC seeds, making quality control trials mandatory, especially since the structure-activity relationship (SAR) of the escin molecules remains poorly described. In the present study, mass spectrometry, microwave activation, and hemolytic activity assays were used to characterize escin extracts (including a complete quantitative description of the escin congeners and isomers), modify the natural saponins (hydrolysis and transesterification) and measure their cytotoxicity (natural vs. modified escins). The aglycone ester groups characterizing the escin isomers were targeted. A complete quantitative analysis, isomer per isomer, of the weight content in the saponin extracts as well as in the seed dry powder is reported for the first time. An impressive 13% in weight of escins in the dry seeds was measured, confirming that the HC escins must be absolutely considered for high-added value applications, provided that their SAR is established. One of the objectives of this study was to contribute to this development by demonstrating that the aglycone ester functions are mandatory for the toxicity of the escin derivative, and that the cytotoxicity also depends on the relative position of the ester functions on the aglycone.


Asunto(s)
Aesculus , Saponinas , Escina/química , Aesculus/química , Preparaciones Farmacéuticas , Extractos Vegetales
8.
Mar Drugs ; 21(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36976233

RESUMEN

Intraspecific chemical communication between echinoderms has often been limited to prespawning aggregation. However, sea cucumber farmers have long observed year-round adult aggregation as a potential source of disease propagation and the suboptimal use of available sea pen acreage and food resources. In this study, through spatial distribution statistics, we demonstrated the significant aggregation of the aquacultivated sea cucumber Holothuria scabra both as adults in large sea-based pens and as juveniles in laboratory-based aquaria, proving that aggregation in these animals is not only observed during spawning. The role of chemical communication in aggregation was investigated using olfactory experimental assays. Our study established that the sediment that H. scabra feeds on as well as the water preconditioned by conspecifics induced positive chemotaxis in juvenile individuals. More specifically, through comparative mass spectrometry, a distinct triterpenoid saponin profile/mixture was identified to be a pheromone allowing sea cucumber intraspecific recognition and aggregation. This "attractive" profile was characterized as containing disaccharide saponins. This "attractive" aggregation-inducing saponin profile was, however, not conserved in starved individuals that were no longer attractive to other conspecifics. In summary, this study sheds new light on the pheromones in echinoderms. It highlights the complexity of the chemical signals detected by sea cucumbers and suggests a role of saponins well beyond that of a simple toxin.


Asunto(s)
Holothuria , Saponinas , Pepinos de Mar , Animales , Holothuria/química , Saponinas/farmacología , Saponinas/química , Espectrometría de Masas
9.
Chirality ; 35(6): 355-364, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36843149

RESUMEN

Conjugated polymers have demonstrated to express chirality, for instance, by strong circular dichroism (CD). However, the shape and intensity of the spectra can be quite different and are very difficult to predict. Molecular irregularity, star-shapes, and linking polymers have demonstrated to affect the CD, often in a positive way. In this research, we design two different chiral arms, in which the molecular irregularity results in a significantly different CD. Next, the arms are coupled to a linear core in all possible combinations. In this way, we demonstrate that rather small irregularities and linking arms to a central core increases CD, whereas heterogenous combinations result in smaller CD.

10.
Mass Spectrom Rev ; 42(3): 954-983, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-34431118

RESUMEN

Saponins are amphiphilic molecules of pharmaceutical interest and most of their biological activities (i.e., cytotoxic, hemolytic, fungicide, etc.) are associated to their membranolytic properties. These molecules are secondary metabolites present in numerous plants and in some marine animals, such as sea cucumbers and starfishes. Structurally, all saponins correspond to the combination of a hydrophilic glycan, consisting of sugar chain(s), linked to a hydrophobic triterpenoidic or steroidic aglycone, named the sapogenin. Saponins present a high structural diversity and their structural characterization remains extremely challenging. Ideally, saponin structures are best established using nuclear magnetic resonance experiments conducted on isolated molecules. However, the extreme structural diversity of saponins makes them challenging from a structural analysis point of view since, most of the time, saponin extracts consist in a huge number of congeners presenting only subtle structural differences. In the present review, we wish to offer an overview of the literature related to the development of mass spectrometry for the study of saponins. This review will demonstrate that most of the past and current mass spectrometry methods, including electron, electrospray and matrix-assisted laser desorption/ionization ionizations, gas/liquid chromatography coupled to (tandem) mass spectrometry, collision-induced dissociation including MS3 experiments, multiple reaction monitoring based quantification, ion mobility experiments, and so forth, have been used for saponin investigations with great success on enriched extracts but also directly on tissues using imaging methods.


Asunto(s)
Saponinas , Animales , Saponinas/análisis , Saponinas/química , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectroscopía de Resonancia Magnética , Extractos Vegetales , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Líquida de Alta Presión/métodos
11.
Mass Spectrom Rev ; 42(4): 1129-1151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34747528

RESUMEN

An increasing number of studies take advantage of ion mobility spectrometry (IMS) coupled to mass spectrometry (IMS-MS) to investigate the spatial structure of gaseous ions. Synthetic polymers occupy a unique place in the field of IMS-MS. Indeed, due to their intrinsic dispersity, they offer a broad range of homologous ions with different lengths. To help rationalize experimental data, various theoretical approaches have been described. First, the study of trend lines is proposed to derive physicochemical and structural parameters. However, the evaluation of data fitting reflects the overall behavior of the ions without reflecting specific information on their conformation. Atomistic simulations constitute another approach that provide accurate information about the ion shape. The overall scope of this review is dedicated to the synergy between IMS-MS and theoretical approaches, including computational chemistry, demonstrating the essential role they play to fully understand/interpret IMS-MS data.

12.
J Am Soc Mass Spectrom ; 33(8): 1555-1568, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35875874

RESUMEN

The combination between ion mobility mass spectrometry and molecular dynamics simulations is demonstrated for the first time to afford valuable information on structural changes undergone by dendriplexes containing ds-DNA and low-generation dendrimers when transferred from the solution to the gas phase. Dendriplex ions presenting 1:1 and 2:1 stoichiometries are identified using mass spectrometry experiments, and the collision cross sections (CCS) of the 1:1 ions are measured using drift time ion mobility experiments. Structural predictions using Molecular Dynamics (MD) simulations showed that gas-phase relevant structures, i.e., with a good match between the experimental and theoretical CCS, are generated when the global electrospray process is simulated, including the solvent molecule evaporation, rather than abruptly transferring the ions from the solution to the gas phase. The progressive migration of ammonium groups (either NH4+ from the buffer or protonated amines of the dendrimer) into the minor and major grooves of DNA all along the evaporation processes is shown to compact the DNA structure by electrostatic and hydrogen-bond interactions. The subsequent proton transfer from the ammonium (NH4+ or protonated amino groups) to the DNA phosphate groups allows creation of protonated phosphate/phosphate hydrogen bonds within the compact structures. MD simulations showed major structural differences between the dendriplexes in solution and in the gas phase, not only due to the loss of the solvent but also due to the proton transfers and the huge difference between the solution and gas-phase charge states.


Asunto(s)
Compuestos de Amonio , Simulación de Dinámica Molecular , Iones/química , Fosfatos , Protones , Solventes
13.
Molecules ; 27(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35630692

RESUMEN

Saponins are specific metabolites abundantly present in plants and several marine animals. Their high cytotoxicity is associated with their membranolytic properties, i.e., their propensity to disrupt cell membranes upon incorporation. As such, saponins are highly attractive for numerous applications, provided the relation between their molecular structures and their biological activities is understood at the molecular level. In the present investigation, we focused on the bidesmosidic saponins extracted from the quinoa husk, whose saccharidic chains are appended on the aglycone via two different linkages, a glycosidic bond, and an ester function. The later position is sensitive to chemical modifications, such as hydrolysis and methanolysis. We prepared and characterized three sets of saponins using mass spectrometry: (i) bidesmosidic saponins directly extracted from the ground husk, (ii) monodesmosidic saponins with a carboxylic acid group, and (iii) monodesmosidic saponins with a methyl ester function. The impact of the structural modifications on the membranolytic activity of the saponins was assayed based on the determination of their hemolytic activity. The natural bidesmosidic saponins do not present any hemolytic activity even at the highest tested concentration (500 µg·mL-1). Hydrolyzed saponins already degrade erythrocytes at 20 µg·mL-1, whereas 100 µg·mL-1 of transesterified saponins is needed to induce detectable activity. The observation that monodesmosidic saponins, hydrolyzed or transesterified, are much more active against erythrocytes than the bidesmosidic ones confirms that bidesmosidic saponins are likely to be the dormant form of saponins in plants. Additionally, the observation that negatively charged saponins, i.e., the hydrolyzed ones, are more hemolytic than the neutral ones could be related to the red blood cell membrane structure.


Asunto(s)
Chenopodium quinoa , Saponinas , Triterpenos , Chenopodium quinoa/química , Ésteres , Hemólisis , Hidrólisis , Saponinas/química , Saponinas/farmacología , Triterpenos/química
14.
Biology (Basel) ; 11(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35453744

RESUMEN

Specific floral resources may help bees to face environmental challenges such as parasite infection, as recently shown for sunflower pollen. Whereas this pollen diet is known to be unsuitable for the larval development of bumble bees, it has been shown to reduce the load of a trypanosomatid parasite (Crithidia bombi) in the bumble bee gut. Recent studies suggested it could be due to phenolamides, a group of compounds commonly found in flowering plants. We, therefore, decided to assess separately the impacts of sunflower pollen and its phenolamides on a bumble bee and its gut parasite. We fed Crithidia-infected and -uninfected microcolonies of Bombus terrestris either with a diet of willow pollen (control), a diet of sunflower pollen (natural diet) or a diet of willow pollen supplemented with sunflower phenolamides (supplemented diet). We measured several parameters at both microcolony (i.e., food collection, parasite load, brood development and stress responses) and individual (i.e., fat body content and phenotypic variation) levels. As expected, the natural diet had detrimental effects on bumble bees but surprisingly, we did not observe any reduction in parasite load, probably because of bee species-specific outcomes. The supplemented diet also induced detrimental effects but by contrast to our a priori hypothesis, it led to an increase in parasite load in infected microcolonies. We hypothesised that it could be due to physiological distress or gut microbiota alteration induced by phenolamide bioactivities. We further challenged the definition of medicinal effects and questioned the way to assess them in controlled conditions, underlining the necessity to clearly define the experimental framework in this research field.

15.
Molecules ; 27(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35056852

RESUMEN

Saponins are plant and marine animal specific metabolites that are commonly considered as molecular vectors for chemical defenses against unicellular and pluricellular organisms. Their toxicity is attributed to their membranolytic properties. Modifying the molecular structures of saponins by quantitative and selective chemical reactions is increasingly considered to tune the biological properties of these molecules (i) to prepare congeners with specific activities for biomedical applications and (ii) to afford experimental data related to their structure-activity relationship. In the present study, we focused on the sulfated saponins contained in the viscera of Holothuria scabra, a sea cucumber present in the Indian Ocean and abundantly consumed on the Asian food market. Using mass spectrometry, we first qualitatively and quantitatively assessed the saponin content within the viscera of H. scabra. We detected 26 sulfated saponins presenting 5 different elemental compositions. Microwave activation under alkaline conditions in aqueous solutions was developed and optimized to quantitatively and specifically induce the desulfation of the natural saponins, by a specific loss of H2SO4. By comparing the hemolytic activities of the natural and desulfated extracts, we clearly identified the sulfate function as highly responsible for the saponin toxicity.


Asunto(s)
Holothuria/química , Saponinas/química , Saponinas/farmacología , Sulfatos/química , Sulfatos/farmacología , Vísceras/química , Álcalis/química , Animales , Bovinos , Cromatografía Liquida , Hemólisis/efectos de los fármacos , Hemolíticos/análisis , Hemolíticos/química , Hemolíticos/aislamiento & purificación , Hemolíticos/farmacología , Hidrólisis , Océano Índico , Microondas , Saponinas/análisis , Saponinas/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Sulfatos/análisis , Sulfatos/aislamiento & purificación , Espectrometría de Masas en Tándem
16.
Biomacromolecules ; 23(3): 1138-1147, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35041390

RESUMEN

Although N-(S)-phenylethyl peptoids are known to adopt helical structures in solutions, the corresponding positively charged ions lose their helical structure during the transfer from the solution to the gas phase due to the so-called charge solvation effect. We, here, considered negatively charged peptoids to investigate by ion mobility spectrometry-mass spectrometry whether the structural changes described in the positive ionization mode can be circumvented in the negative mode by a fine-tuning of the peptoid sequence, that is, by positioning the negative charge at the positive side of the helical peptoid macrodipole. N-(S)-(1-carboxy-2-phenylethyl) (Nscp) and N-(S)-phenylethyl (Nspe) were selected as the negative charge carrier and as the helix inductor, respectively. We, here, report the results of a joint theoretical and experimental study demonstrating that the structures adopted by the NspenNscp anions remain compactly folded in the gas phase for chains containing up to 10 residues, whereas no evidence of the presence of a helical structure was obtained, even if, for selected sequences and lengths, different gas phase conformations are detected.


Asunto(s)
Peptoides , Aniones , Espectrometría de Movilidad Iónica , Iones , Conformación Molecular , Peptoides/química
17.
Biomacromolecules ; 22(8): 3543-3551, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34251172

RESUMEN

Folding and unfolding processes are key aspects that should be mastered for the design of foldamer molecules for targeted applications. In contrast to the solution phase, in vacuo conditions represent a well-defined environment to analyze the intramolecular interactions that largely control the folding/unfolding dynamics. Ion mobility mass spectrometry coupled to theoretical modeling represents an efficient method to decipher the spatial structures of gaseous ions, including foldamers. However, charge solvation typically compacts the ion structure in the absence of strong stabilizing secondary interactions. This is the case in peptoids that are synthetic peptide regioisomers whose side chains are connected to the nitrogen atoms of the backbone instead of α-carbon as in peptides, thus implying the absence of H-bonds among the core units of the backbone. A recent work indeed reported that helical peptoids based on Nspe units formed in solution do not retain their secondary structure when transferred to the gas phase upon electrospray ionization (ESI). In this context, we demonstrate here that the helical structure of peptoids bearing (S)-N-(1-carboxy-2-phenylethyl) bulky side chains (Nscp) is largely preserved in the gas phase by the creation of a hydrogen bond network, induced by the presence of carboxylic moieties, that compensates for the charge solvation process.


Asunto(s)
Peptoides , Gases , Enlace de Hidrógeno , Iones , Estructura Secundaria de Proteína
18.
Biomacromolecules ; 22(6): 2573-2581, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34009963

RESUMEN

Peptoids are peptide regioisomers with attractive structural tunability in terms of sequence and three-dimensional arrangement. Peptoids are foreseen to have a great potential for many diverse applications, including their utilization as a chiral stationary phase in chromatography. To achieve chiral recognition, a chiral side chain is required to allow specific interactions with a given enantiomer from a racemic mixture. One of the most studied chiral stationary phases, built with (S)-N-1-phenylethyl (Nspe) units, was shown to be successful in resolving racemic mixtures of binaphthyl derivatives. However, there is currently no description at the atomic scale of the factors favoring its enantioselectivity. Here, we take advantage of steered molecular dynamics simulations to mimic the elution process at the atomic scale and present evidence that the predominantly right-handed helical conformation of Nspe peptoids and their ability to form stronger hydrogen bonds with the (S) enantiomer are responsible for the chiral recognition of the popular chiral probe 2,2'-bihydroxy-1,1'-binaphthyl.


Asunto(s)
Peptoides , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Conformación Molecular , Simulación de Dinámica Molecular , Estereoisomerismo
19.
Inorg Chem ; 60(1): 366-379, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33351615

RESUMEN

Four trinuclear ruthenium(II) polypyridyl complexes were synthesized, and a detailed investigation of their excited-state properties was performed. The tritopic sexi-pyridine bridging ligands were obtained via para or meta substitution of a central 2,2'-bipyridine fragment. A para connection between the 2,2'-bipyridine chelating moieties of the bridging ligand led to a red-shifted MLCT absorption band in the visible part of the spectra, whereas the meta connection induced a broadening of the LC transitions in the UV region. A convergent energy transfer from the two peripheral metal centers to the central Ru(II) moiety was observed for all trinuclear complexes. These complexes were in thermal equilibrium with an upper-lying 3MLCT excited state over the investigated range of temperatures. For all complexes, deactivation via the 3MC excited state was absent at room temperature. Importantly, the connection in the para position for both central and peripheral 2,2'-bipyridines of the bridging ligand resulted in a trinuclear complex (Tpp) that absorbed more visible light, had a longer-lived excited state, and had a higher photoluminescence quantum yield than the parent [Ru(bpy)3]2+, despite its red-shifted photoluminescence. This behavior was attributed to the presence of a highly delocalized excited state for Tpp.

20.
Sci Rep ; 10(1): 22150, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335179

RESUMEN

Aquacultivated sea cucumbers often suffer from SKin Ulceration Diseases (SKUDs). SKUDs have been observed in six holothuroid species from nine countries. All SKUDs present a similar symptom-the skin ulceration-and can be induced by bacteria, viruses, or abiotic factors. We here provide an update on SKUDs in holothuroids and analyse the case of the SKUD observed in Holothuria scabra in Madagascar. Field observations revealed a seasonality of the disease (i.e. wintertime maximum peak). Morphological analyses of integument ulcers showed that sea cucumbers react by forming a collagen fibre plug. Metagenomic analyses revealed a higher proportion of Vibrionaceae (Gammaproteobacteria) in ulcers in comparison to the healthy integument of the same individuals. Experimental infection assays were performed with ulcer crude extracts and bacteria isolated from these extracts (e.g. Vibrio parahaemolyticus) but did not significantly induce skin ulceration. Our results suggest that the disease is not induced by a pathogen or, at the very least, that the pathogen is not found within the ulcers as the disease is not transmissible by contact. An initial cause of the SKUD in Madagascar might be the repeated and prolonged exposures to cold temperatures. Opportunistic bacteria could settle in the dermis of ulcerated individuals and promote the ulcer extension. We propose a general nomenclature for SKUDs based on the acronym of the disease, the affected sea cucumber species (e.g. Hs for Holothuria scabra), the concerned region using an ISO code 3166-2 (e.g. MG for Madagascar), the description date (e.g. 20 for the year 2020), and, when known, the inducing agent (first letter of the general taxon, b for bacteria, v for virus in currently known cases; a a if it is an abiotic inducing parameter; nothing if the inducing cause has not been precisely identified). The disease described in this work will be designated under the name SKUD Hs-MG-20.


Asunto(s)
Enfermedades de los Animales/epidemiología , Equinodermos , Holothuria , Úlcera Cutánea/veterinaria , Enfermedades de los Animales/etiología , Animales , Susceptibilidad a Enfermedades , Equinodermos/microbiología , Holothuria/microbiología , Inmunohistoquímica , Madagascar/epidemiología , Piel/microbiología , Piel/patología , Piel/ultraestructura , Evaluación de Síntomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...