Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 180 Suppl 2: S1-S22, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123153

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Bases de Datos Factuales , Canales Iónicos , Ligandos , Receptores Citoplasmáticos y Nucleares
2.
Br J Pharmacol ; 178 Suppl 1: S1-S26, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529830

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15537. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Ligandos , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares
3.
J Biol Chem ; 296: 100024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33410399

RESUMEN

The human genome contains vast genetic diversity as naturally occurring coding variants, yet the impact of these variants on protein function and physiology is poorly understood. RGS14 is a multifunctional signaling protein that suppresses synaptic plasticity in dendritic spines of hippocampal neurons. RGS14 also is a nucleocytoplasmic shuttling protein, suggesting that balanced nuclear import/export and dendritic spine localization are essential for RGS14 functions. We identified genetic variants L505R (LR) and R507Q (RQ) located within the nuclear export sequence (NES) of human RGS14. Here we report that RGS14 encoding LR or RQ profoundly impacts protein functions in hippocampal neurons. RGS14 membrane localization is regulated by binding Gαi-GDP, whereas RGS14 nuclear export is regulated by Exportin 1 (XPO1). Remarkably, LR and RQ variants disrupt RGS14 binding to Gαi1-GDP and XPO1, nucleocytoplasmic equilibrium, and capacity to inhibit long-term potentiation (LTP). Variant LR accumulates irreversibly in the nucleus, preventing RGS14 binding to Gαi1, localization to dendritic spines, and inhibitory actions on LTP induction, while variant RQ exhibits a mixed phenotype. When introduced into mice by CRISPR/Cas9, RGS14-LR protein expression was detected predominantly in the nuclei of neurons within hippocampus, central amygdala, piriform cortex, and striatum, brain regions associated with learning and synaptic plasticity. Whereas mice completely lacking RGS14 exhibit enhanced spatial learning, mice carrying variant LR exhibit normal spatial learning, suggesting that RGS14 may have distinct functions in the nucleus independent from those in dendrites and spines. These findings show that naturally occurring genetic variants can profoundly alter normal protein function, impacting physiology in unexpected ways.


Asunto(s)
Núcleo Celular/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Mutación , Neuronas/metabolismo , Proteínas RGS/genética , Animales , Hipocampo/citología , Hipocampo/fisiología , Humanos , Carioferinas/metabolismo , Ratones , Plasticidad Neuronal , Transporte de Proteínas , Proteínas RGS/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Aprendizaje Espacial , Proteína Exportina 1
4.
Oncoimmunology ; 9(1): 1847832, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33329939

RESUMEN

The cyclin-dependent kinase inhibitor p27Kip1 is a tumor suppressor whose intrinsic activity in cancer cells correlates with tumor aggressiveness, invasiveness, and impaired tumor cell differentiation. Here we explore whether p27Kip1 indirectly influences tumor progression by restricting expansion and survival of effector memory T cell (TEM) populations in a preclinical model of spontaneous colitis-associated colorectal cancer (CAC). We show mRNA and protein expression of p27Kip1 to be significantly decreased in the colons of mice with a T cell-restricted deletion of the TGF-ß intermediate, SMAD4 (Smad4TKO). Loss of p27Kip1 expression in T cells correlates with the onset of spontaneous CAC in Smad4TKO mice by 8 months of age. This phenotype is greatly accelerated by the introduction of a germline deletion of CDKN1b (the gene encoding p27Kip1) in Smad4TKO mice (Smad4TKO/p27Kip1-/-, DKO). DKO mice display colon carcinoma by 3 months of age and increased mortality compared to Smad4TKO. Importantly, the phenotype in DKO mice is associated with a significant increase in the frequency of effector CD4 T cells expressing abundant IFN-γ and with a concomitant decrease in Foxp3+ regulatory T cells, both in the intestinal mucosa and in the periphery. In addition, induction of inflammatory mediators (IFN-γ, TNF-γ, IL-6, IL-1ß, iNOS) and activation of Stat1, Stat3, and IκB is also observed in the colon as early as 1-2 months of age. Our data suggest that genomic alterations known to influence p27Kip1 abundance in gastrointestinal cancers may indirectly promote epithelial malignancy by augmenting the production of inflammatory mediators from a spontaneously expanding pool of TEM cells.


Asunto(s)
Neoplasias Asociadas a Colitis , Memoria Inmunológica , Animales , Linfocitos T CD4-Positivos , Linaje de la Célula , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Ratones
6.
J Proteome Res ; 18(6): 2571-2584, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31059263

RESUMEN

The hippocampus is well established as an essential brain center for learning and memory. Within the hippocampus, recent studies show that area CA2 is important for social memory and is an anomaly compared to its better-understood neighboring region, CA1. Unlike CA1, CA2 displays a lack of typical synaptic plasticity, enhanced calcium buffering and extrusion, and resilience to cell death following injury. Although recent studies have identified multiple molecular markers of area CA2, the proteins that mediate the unique physiology, signaling, and resilience of this region are unknown. Using a transgenic GFP-reporter mouse line that expresses eGFP in CA2, we were able to perform targeted dissections of area CA2 and CA1 for proteomic analysis. We identified over 100 proteins with robustly enriched expression in area CA2 compared to CA1. Many of these proteins, including RGS14 and NECAB2, have already been shown to be enriched in CA2 and important for its function, while many more merit further study in the context of enhanced expression in this enigmatic brain region. Furthermore, we performed a comprehensive analysis of the entire data set (>2300 proteins) using a weighted protein co-expression network analysis. This identified eight distinct co-expressed patterns of protein co-enrichment associated with increased expression in area CA2 tissue (compared to CA1). The novel data set we present here reveals a specific CA2 hippocampal proteome, laying the groundwork for future studies and a deeper understanding of area CA2 and the proteins mediating its unique physiology and signaling.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA2 Hipocampal/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas del Ojo/genética , Proteoma/genética , Proteínas RGS/genética , Animales , Calcio/metabolismo , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Humanos , Ratones , Plasticidad Neuronal/genética , Mapas de Interacción de Proteínas/genética , Proteoma/metabolismo , Transducción de Señal/genética
7.
J Biol Chem ; 293(38): 14616-14631, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30093406

RESUMEN

Regulator of G protein signaling 14 (RGS14) is a multifunctional brain scaffolding protein that integrates G protein and Ras/ERK signaling pathways. It is also a nucleocytoplasmic shuttling protein. RGS14 binds active Gαi/o via its RGS domain, Raf and active H-Ras-GTP via its R1 Ras-binding domain (RBD), and inactive Gαi1/3 via its G protein regulatory (GPR) domain. RGS14 suppresses long-term potentiation (LTP) in the CA2 region of the hippocampus, thereby regulating hippocampally based learning and memory. The 14-3-3 family of proteins is necessary for hippocampal LTP and associative learning and memory. Here, we show direct interaction between RGS14 and 14-3-3γ at two distinct sties, one phosphorylation-independent and the other phosphorylation-dependent at Ser-218 that is markedly potentiated by signaling downstream of active H-Ras. Using bioluminescence resonance energy transfer (BRET), we show that the pSer-218-dependent RGS14/14-3-3γ interaction inhibits active Gαi1-AlF4- binding to the RGS domain of RGS14 but has no effect on active H-Ras and inactive Gαi1-GDP binding to RGS14. By contrast, the phosphorylation-independent binding of 14-3-3 has no effect on RGS14/Gαi interactions but, instead, inhibits (directly or indirectly) RGS14 nuclear import and nucleocytoplasmic shuttling. Together, our findings describe a novel mechanism of negative regulation of RGS14 functions, specifically interactions with active Gαi and nuclear import, while leaving the function of other RGS14 domains intact. Ongoing studies will further elucidate the physiological function of this interaction between RGS14 and 14-3-3γ, providing insight into the functions of both RGS14 and 14-3-3 in their roles in modulating synaptic plasticity in the hippocampus.


Asunto(s)
Proteínas 14-3-3/metabolismo , Compuestos de Aluminio/metabolismo , Núcleo Celular/metabolismo , Fluoruros/metabolismo , Proteínas RGS/metabolismo , Transducción de Señal , Animales , Sitios de Unión , Transferencia de Energía , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Aprendizaje , Potenciación a Largo Plazo , Memoria , Neuronas/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Ratas , Fracciones Subcelulares/metabolismo
8.
J Proteome Res ; 17(4): 1700-1711, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518331

RESUMEN

Regulator of G Protein Signaling 14 (RGS14) is a complex scaffolding protein that integrates G protein and MAPK signaling pathways. In the adult mouse brain, RGS14 is predominantly expressed in hippocampal CA2 neurons where it naturally inhibits synaptic plasticity and hippocampus-dependent learning and memory. However, the signaling proteins that RGS14 natively engages to regulate plasticity are unknown. Here, we show that RGS14 exists in a high-molecular-weight protein complex in brain. To identify RGS14 neuronal interacting partners, endogenous RGS14 immunoprecipitated from mouse brain was subjected to mass spectrometry and proteomic analysis. We find that RGS14 interacts with key postsynaptic proteins that regulate plasticity. Gene ontology analysis reveals the most enriched RGS14 interactors have functional roles in actin-binding, calmodulin(CaM)-binding, and CaM-dependent protein kinase (CaMK) activity. We validate these findings using biochemical assays that identify interactions with two previously unknown binding partners. We report that RGS14 directly interacts with Ca2+/CaM and is phosphorylated by CaMKII in vitro. Lastly, we detect that RGS14 associates with CaMKII and CaM in hippocampal CA2 neurons. Taken together, these findings demonstrate that RGS14 is a novel CaM effector and CaMKII phosphorylation substrate thereby providing new insight into mechanisms by which RGS14 controls plasticity in CA2 neurons.


Asunto(s)
Química Encefálica , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Hipocampo/química , Proteínas RGS/metabolismo , Animales , Región CA2 Hipocampal/citología , Calcio/metabolismo , Hipocampo/metabolismo , Ratones , Plasticidad Neuronal , Neuronas/metabolismo , Fosforilación , Unión Proteica , Proteómica
9.
Brain Struct Funct ; 223(1): 233-253, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28776200

RESUMEN

Regulator of G protein signaling 14 (RGS14) is a multifunctional signaling protein primarily expressed in mouse pyramidal neurons of hippocampal area CA2 where it regulates synaptic plasticity important for learning and memory. However, very little is known about RGS14 protein expression in the primate brain. Here, we validate the specificity of a new polyclonal RGS14 antibody that recognizes not only full-length RGS14 protein in primate, but also lower molecular weight forms of RGS14 protein matching previously predicted human splice variants. These putative RGS14 variants along with full-length RGS14 are expressed in the primate striatum. By contrast, only full-length RGS14 is expressed in hippocampus, and shorter variants are completely absent in rodent brain. We report that RGS14 protein immunoreactivity is found both pre- and postsynaptically in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra, and amygdala in adult rhesus monkeys. A similar cellular expression pattern of RGS14 in the monkey striatum and hippocampus was further confirmed in humans. Our electron microscopy data show for the first time that RGS14 immunostaining localizes within nuclei of striatal neurons in monkeys. Taken together, these findings suggest new pre- and postsynaptic regulatory functions of RGS14 and RGS14 variants, specific to the primate brain, and provide evidence for unconventional roles of RGS14 in the nuclei of striatal neurons potentially important for human neurophysiology and disease.


Asunto(s)
Encéfalo/citología , Dendritas/metabolismo , Neuronas/citología , Terminales Presinápticos/metabolismo , Proteínas RGS/metabolismo , Anciano , Anciano de 80 o más Años , Amígdala del Cerebelo/citología , Animales , Ganglios Basales/citología , Dendritas/ultraestructura , Femenino , Células HEK293 , Hipocampo/citología , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Neuronas/ultraestructura , Terminales Presinápticos/ultraestructura , Proteínas RGS/ultraestructura , Especificidad de la Especie
10.
PLoS Biol ; 15(11): e2003000, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29186135

RESUMEN

In humans and rodents, stress promotes habit-based behaviors that can interfere with action-outcome decision-making. Further, developmental stressor exposure confers long-term habit biases across rodent-primate species. Despite these homologies, mechanisms remain unclear. We first report that exposure to the primary glucocorticoid corticosterone (CORT) in adolescent mice recapitulates multiple neurobehavioral consequences of stressor exposure, including long-lasting biases towards habit-based responding in a food-reinforced operant conditioning task. In both adolescents and adults, CORT also caused a shift in the balance between full-length tyrosine kinase receptor B (trkB) and a truncated form of this neurotrophin receptor, favoring the inactive form throughout multiple corticolimbic brain regions. In adolescents, phosphorylation of the trkB substrate extracellular signal-regulated kinase 42/44 (ERK42/44) in the ventral hippocampus was also diminished, a long-term effect that persisted for at least 12 wk. Administration of the trkB agonist 7,8-dihydroxyflavone (7,8-DHF) during adolescence at doses that stimulated ERK42/44 corrected long-lasting corticosterone-induced behavioral abnormalities. Meanwhile, viral-mediated overexpression of truncated trkB in the ventral hippocampus reduced local ERK42/44 phosphorylation and was sufficient to induce habit-based and depression-like behaviors. Together, our findings indicate that ventral hippocampal trkB is essential to goal-directed action selection, countering habit-based behavior otherwise facilitated by developmental stress hormone exposure. They also reveal an early-life sensitive period during which trkB-ERK42/44 tone determines long-term behavioral outcomes.


Asunto(s)
Conducta Animal , Corticosterona/farmacología , Depresión , Hábitos , Hipocampo/metabolismo , Receptor trkB/fisiología , Maduración Sexual/fisiología , Corticoesteroides/farmacología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Condicionamiento Operante/efectos de los fármacos , Depresión/inducido químicamente , Depresión/genética , Depresión/metabolismo , Flavonas/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Motivación/efectos de los fármacos , Motivación/genética , Receptor trkB/genética , Receptor trkB/metabolismo , Maduración Sexual/efectos de los fármacos
11.
Mol Pharmacol ; 89(2): 273-86, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26655302

RESUMEN

The regulator of G protein signaling (RGS) family of proteins serves critical roles in G protein-coupled receptor (GPCR) and heterotrimeric G protein signal transduction. RGS proteins are best understood as negative regulators of GPCR/G protein signaling. They achieve this by acting as GTPase activating proteins (GAPs) for Gα subunits and accelerating the turnoff of G protein signaling. Many RGS proteins also bind additional signaling partners that either regulate their functions or enable them to regulate other important signaling events. At neuronal synapses, GPCRs, G proteins, and RGS proteins work in coordination to regulate key aspects of neurotransmitter release, synaptic transmission, and synaptic plasticity, which are necessary for central nervous system physiology and behavior. Accumulating evidence has revealed key roles for specific RGS proteins in multiple signaling pathways at neuronal synapses, regulating both pre- and postsynaptic signaling events and synaptic plasticity. Here, we review and highlight the current knowledge of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, and RGS14) that have been clearly demonstrated to serve critical roles in modulating synaptic signaling and plasticity throughout the brain, and we consider their potential as future therapeutic targets.


Asunto(s)
Plasticidad Neuronal/fisiología , Proteínas RGS/fisiología , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...