Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 69(8)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38478998

RESUMEN

Objective. Very high energy electrons (VHEE) in the range of 50-250 MeV are of interest for treating deep-seated tumours with FLASH radiotherapy (RT). This approach offers favourable dose distributions and the ability to deliver ultra-high dose rates (UHDR) efficiently. To make VHEE-based FLASH treatment clinically viable, a novel beam monitoring technology is explored as an alternative to transmission ionisation monitor chambers, which have non-linear responses at UHDR. This study introduces the fibre optic flash monitor (FOFM), which consists of an array of silica optical fibre-based Cherenkov sensors with a photodetector for signal readout.Approach. Experiments were conducted at the CLEAR facility at CERN using 200 MeV and 160 MeV electrons to assess the FOFM's response linearity to UHDR (characterised with radiochromic films) required for FLASH radiotherapy. Beam profile measurements made on the FOFM were compared to those using radiochromic film and scintillating yttrium aluminium garnet (YAG) screens.Main results. A range of photodetectors were evaluated, with a complementary-metal-oxide-semiconductor (CMOS) camera being the most suitable choice for this monitor. The FOFM demonstrated excellent response linearity from 0.9 Gy/pulse to 57.4 Gy/pulse (R2= 0.999). Furthermore, it did not exhibit any significant dependence on the energy between 160 MeV and 200 MeV nor the instantaneous dose rate. Gaussian fits applied to vertical beam profile measurements indicated that the FOFM could accurately provide pulse-by-pulse beam size measurements, agreeing within the error range of radiochromic film and YAG screen measurements, respectively.Significance. The FOFM proves to be a promising solution for real-time beam profile and dose monitoring for UHDR VHEE beams, with a linear response in the UHDR regime. Additionally it can perform pulse-by-pulse beam size measurements, a feature currently lacking in transmission ionisation monitor chambers, which may become crucial for implementing FLASH radiotherapy and its associated quality assurance requirements.


Asunto(s)
Electrones , Radioterapia de Alta Energía , Dosificación Radioterapéutica , Tecnología de Fibra Óptica , Radiometría/métodos
2.
Med Phys ; 45(11): e953-e983, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30421804

RESUMEN

Particle therapy is rapidly expanding and claiming its position as the treatment modality of choice in teletherapy. However, the rate of expansion continues to be restricted by the size and cost of the associated particle therapy systems and their operation. Additional technical limitations such as dose delivery rate, treatment process efficiency, and achievement of superior dose conformity potentially hinder the complete fulfillment of the promise of particle therapy. These topics are explored in this review considering the current state of particle therapy systems and what improvements are required to overcome the current challenges. Beam production systems (accelerators), beam transport systems including gantries and beam delivery systems are addressed explicitly in these regards.


Asunto(s)
Radioterapia/métodos , Ciclotrones , Humanos , Radioterapia/instrumentación
3.
Phys Med Biol ; 61(14): N337-48, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27351317

RESUMEN

We report on test measurements using boron carbide (B4C) as degrader material in comparison with the conventional graphite, which is currently used in many proton therapy degraders. Boron carbide is a material of lower average atomic weight and higher density than graphite. Calculations predict that, compared to graphite, the use of boron carbide results in a lower emittance behind the degrader due to the shorter degrader length. Downstream of the acceptance defining collimation system we expect a higher beam transmission, especially at low beam energies. This is of great interest in proton therapy applications as it allows either a reduction of the beam intensity extracted from the cyclotron leading to lower activation or a reduction of the treatment time. This paper summarizes the results of simulations and experiments carried out at the PROSCAN facility at the Paul Scherrer Institute(1). The simulations predict an increase in the transmitted beam current after the collimation system of approx. 30.5% for beam degradation from 250 to 84 MeV for a boron carbide degrader compared to graphite. The experiment carried out with a boron carbide block reducing the energy to 84 MeV yielded a transmission improvement of 37% compared with the graphite degrader set to that energy.


Asunto(s)
Compuestos de Boro/química , Carbono/química , Ciclotrones , Grafito/química , Terapia de Protones , Simulación por Computador
4.
Z Med Phys ; 26(3): 224-37, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27084590

RESUMEN

PURPOSE: A first order design of the beam optics of a superconducting proton therapy gantry beam is presented. The possibilities of superconducting magnets with respect to the beam optics such as strong fields, large apertures and superposition of different multipole fields have been exploited for novel concepts in a gantry. Since various techniques used in existing gantries have been used in our first design steps, some examples of the existing superconducting gantry designs are described and the necessary requirements of such a gantry are explained. METHODS: The study of a gantry beam optics design is based on superconducting combined function magnets. The simulations have been performed in first order with the conventional beam transport codes. RESULTS: The superposition of strong dipole and quadrupole fields generated by superconducting magnets enables the introduction of locally achromatic bending sections without increasing the gantry size. A rigorous implementation of such beam optics concepts into the proposed gantry design dramatically increases the momentum acceptance compared to gantries with normal conducting magnets. In our design this large acceptance has been exploited by the implementation of a degrader within the gantry and a potential possibility to use the same magnetic field for all energies used in a treatment, so that the superconducting magnets do not have to vary their fields during a treatment. This also enables very fast beam energy changes, which is beneficial for spreading the Bragg peak over the thickness of the tumor. CONCLUSIONS: The results show an improvement of its momentum acceptance. Large momentum acceptance in the gantry creates a possibility to implement faster dose application techniques.


Asunto(s)
Diseño Asistido por Computadora , Imanes , Terapia de Protones/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Superconductividad , Diseño de Equipo , Análisis de Falla de Equipo , Dispositivos Ópticos , Dosificación Radioterapéutica , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA