Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Radiat Oncol ; 46: 100746, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38550309

RESUMEN

Introduction: Deep-inspirational breath hold (DIBH) is an option for heart protection in breast radiotherapy; we intended to study its individual benefit. Materials and Methods: 3DCRT treatment planning was performed in a cohort of 103 patients receiving radiotherapy of the whole breast (WBI)/chest wall (CWI) ± nodal regions (NI) both under DIBH and free breathing (FB) in the supine position, and in the WBI only cases prone (n = 45) position, too. A series of patient-related and heart dosimetry parameters were analyzed. Results: The DIBH technique provided dramatic reduction of all heart dosimetry parameters the individual benefit, however, varied. In the whole population the best predictor of benefit was the ratio of ipsilateral lung volume (ILV)FB and ILVDIBH. In the WBI cohort 9-11 patients and 5-8 patients received less dose to selected heart structures with the DIBH and prone positioning, respectively; based on meeting various dose constraints DIBH was the only solution in 6-13 cases, and prone positioning in 5-6 cases. In addition to other excellent predictors, a small ILVFB or ILVDIBH with outstanding predicting performance (AUC ≥ 0.90) suggested prone positioning. Detailed analysis consistently indicated the outstanding performance of ILVFB and ILVDIBH in predicting the benefit of one over the other technique in lowering the mean heart dose (MHD), left anterior descending coronary artery (LAD) mean dose and left ventricle(LV)-V5Gy. The preference of prone positioning was further confirmed by anatomical parameters measured on a single CT scan at the middle of the heart. Performing spirometry in a cohort of 12 patients, vital capacity showed the strongest correlation with ILVFB and ILVDIBH hence this test could be evaluated as a clinical tool for patient selection. Discussion: Individual lung volume measures estimated by spirometry and anatomical data examined prior to acquiring planning CT may support the preference of DIBH or prone radiotherapy for optimal heart protection.

2.
BMC Pulm Med ; 24(1): 27, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200483

RESUMEN

BACKGROUND: Pulmonary air embolism (AE) and thromboembolism lead to severe ventilation-perfusion defects. The spatial distribution of pulmonary perfusion dysfunctions differs substantially in the two pulmonary embolism pathologies, and the effects on respiratory mechanics, gas exchange, and ventilation-perfusion match have not been compared within a study. Therefore, we compared changes in indices reflecting airway and respiratory tissue mechanics, gas exchange, and capnography when pulmonary embolism was induced by venous injection of air as a model of gas embolism or by clamping the main pulmonary artery to mimic severe thromboembolism. METHODS: Anesthetized and mechanically ventilated rats (n = 9) were measured under baseline conditions after inducing pulmonary AE by injecting 0.1 mL air into the femoral vein and after occluding the left pulmonary artery (LPAO). Changes in mechanical parameters were assessed by forced oscillations to measure airway resistance, lung tissue damping, and elastance. The arterial partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) were determined by blood gas analyses. Gas exchange indices were also assessed by measuring end-tidal CO2 concentration (ETCO2), shape factors, and dead space parameters by volumetric capnography. RESULTS: In the presence of a uniform decrease in ETCO2 in the two embolism models, marked elevations in the bronchial tone and compromised lung tissue mechanics were noted after LPAO, whereas AE did not affect lung mechanics. Conversely, only AE deteriorated PaO2, and PaCO2, while LPAO did not affect these outcomes. Neither AE nor LPAO caused changes in the anatomical or physiological dead space, while both embolism models resulted in elevated alveolar dead space indices incorporating intrapulmonary shunting. CONCLUSIONS: Our findings indicate that severe focal hypocapnia following LPAO triggers bronchoconstriction redirecting airflow to well-perfused lung areas, thereby maintaining normal oxygenation, and the CO2 elimination ability of the lungs. However, hypocapnia in diffuse pulmonary perfusion after AE may not reach the threshold level to induce lung mechanical changes; thus, the compensatory mechanisms to match ventilation to perfusion are activated less effectively.


Asunto(s)
Embolia Aérea , Embolia Pulmonar , Tromboembolia , Animales , Ratas , Dióxido de Carbono , Hipocapnia , Perfusión , Bronquios , Broncoconstricción
3.
Front Med (Lausanne) ; 10: 1288679, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173937

RESUMEN

Background: Severe coronavirus disease 2019 (COVID-19) may require veno-venous extracorporeal membrane oxygenation (V-V ECMO). While V-V ECMO is offered in severe lung injury to COVID-19, long-term respiratory follow-up in these patients is missing. Therefore, we aimed at providing comprehensive data on the long-term respiratory effects of COVID-19 requiring V-V ECMO support during the acute phase of infection. Methods: In prospective observational cohort study design, patients with severe COVID-19 receiving invasive mechanical ventilation and V-V ECMO (COVID group, n = 9) and healthy matched controls (n = 9) were evaluated 6 months after hospital discharge. Respiratory system resistance at 5 and 19 Hz (R5, R19), and the area under the reactance curve (AX5) was evaluated using oscillometry characterizing total and central airway resistances, and tissue elasticity, respectively. R5 and R19 difference (R5-R19) reflecting small airway function was also calculated. Forced expired volume in seconds (FEV1), forced expiratory vital capacity (FVC), functional residual capacity (FRC), carbon monoxide diffusion capacity (DLCO) and transfer coefficient (KCO) were measured. Results: The COVID group had a higher AX5 and R5-R19 than the healthy matched control group. However, there was no significant difference in terms of R5 or R19. The COVID group had a lower FEV1 and FVC on spirometry than the healthy matched control group. Further, the COVID group had a lower FRC on plethysmography than the healthy matched control group. Meanwhile, the COVID group had a lower DLCO than healthy matched control group. Nevertheless, its KCO was within the normal range. Conclusion: Severe acute COVID-19 requiring V-V ECMO persistently impairs small airway function and reduces respiratory tissue elasticity, primarily attributed to lung restriction. These findings also suggest that even severe pulmonary pathologies of acute COVID-19 can manifest in a moderate but still persistent lung function impairment 6 months after hospital discharge. Trial registration: NCT05812196.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA