Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32709133

RESUMEN

In this study, we conducted a noncarcinogenic risk assessment of consuming vegetables and fruits grown in two old mining areas from the Banat area of Southern Carpathians (Romania), Moldova Veche (M) and Rusca Montana (R) and in a nonpolluted reference area located near the village of Borlova (Ref). Concentrations of Fe, Mn, Zn, Cu, Ni, Cd and Pb in soils and commonly eaten vegetables and fruits were measured and used for calculating the weighted estimated daily intake of metals (WEDIM), the target hazard quotients (THQ) and the total target hazard quotients (TTHQ) for normal daily consumption in adults. Levels of certain metals in soils and plants from the R area (Pb) and the M area (Cu) were higher than those measured in the Ref area-and often exceeded normal or even alert-threshold levels. TTHQs for the R area (1.60; 6.03) and the M area (1.11; 2.54) were above one for leafy vegetables and root vegetables, respectively, suggesting a major risk of adverse health effects for diets, including these vegetal foodstuffs. Moreover, THQ and TTHQ indicated a higher population health risk for the R area than for the M area, with the Ref area being a safe zone.


Asunto(s)
Contaminación de Alimentos , Frutas , Metales Pesados , Medición de Riesgo , Verduras , China , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Frutas/química , Metales Pesados/análisis , Metales Pesados/toxicidad , Montana , Rumanía , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Verduras/química
2.
Environ Toxicol Pharmacol ; 65: 9-13, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30468972

RESUMEN

The available information on the interplay between low-dose cadmium intake and copper, manganese, and iron homeostasis in invertebrates is limited. We have currently studied the accumulation of these trace metals in the hepatopancreas of adult snails, Cantareus aspersus, following 14 and 28 days of exposure to low doses of dietary cadmium, up to 1 mg/kg dw (dry weight). The cadmium dose, but not the duration of exposure, had a significant effect on hepatopancreas copper deposition, the values being significantly elevated compared to controls. A significant peak in manganese levels at 14 days was found in snails administered the lowest cadmium dose. These increases occurred even in the absence of cadmium increase in the hepatopancreas. Our data suggest that low dose cadmium feeding can produce a transient disturbance in hepatopancreas copper and manganese homeostasis. Such responses may serve as early biomarkers of physiological changes occurring during the initial stages of cadmium intoxication.


Asunto(s)
Metales Pesados/metabolismo , Metales Pesados/toxicidad , Caracoles/efectos de los fármacos , Animales , Dieta , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Homeostasis/efectos de los fármacos , Caracoles/metabolismo
3.
PLoS One ; 12(9): e0184221, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28877233

RESUMEN

5-methylcytosine (5mC) is a key epigenetic mark which influences gene expression and phenotype. In vertebrates, this epigenetic mark is sensitive to Cd exposure, but there is no information linking such an event with changes in global 5mC levels in terrestrial gastropods despite their importance as excellentecotoxicological bioindicators of metal contamination. Therefore, we first evaluated total 5mC content in DNA of the hepatopancreas of adult Cantareus aspersus with the aim to determine whether this epigenetic mark is responsive to Cd exposure. The experiment was conducted under laboratory conditions and involved a continuous exposure, multiple dose- and time-point (14, 28, and 56 days) study design. Hepatopancreas cadmium levels were measured using Flame Atomic Absorption Spectrometry and the percentage of 5-mC in samples using an ELISA-based colorimetric assay. Snail death rates were also assessed. Our results, for the first time, reveal the presence of 5mC in C. aspersus and provide evidence for Cd-induced changes in global 5mC levels in DNA of gastropods and mollusks. Although less sensitive than tissue accumulation, DNA methylation levels responded in a dose- and time-dependent manner to dietary cadmium, with exposure dose having a much stronger effect than exposure duration. An obvious trend of increasing 5mC levels was observed starting at 28 days of exposure to the second highest dose and this trend persisted at the two highest treatments for close to one month, when the experiment was terminated after 56 days. Moreover, a strong association was identified between Cd concentrations in the hepatopancreas and DNA methylation levels in this organ. These data indicate an overall trend towards DNA hypermethylation with elevated Cd exposure. No consistent lethal effect was observed, irrespective of time point and Cd-dosage. Overall, our findings suggest that the total 5mC content in DNA of the hepatopancreas of land snails is responsive to sublethal Cd exposure and give new insights into invertebrate environmental epigenetics.


Asunto(s)
Cadmio/toxicidad , Metilación de ADN/efectos de los fármacos , Hepatopáncreas/efectos de los fármacos , Caracoles/efectos de los fármacos , Animales , Dieta/efectos adversos , Hepatopáncreas/metabolismo , Caracoles/metabolismo
4.
PLoS One ; 10(3): e0116397, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25790135

RESUMEN

Land snails are highly tolerant to cadmium exposure and are able to accumulate soil cadmium independently of food ingestion. However, little information exists on the kinetics of cadmium retention in terrestrial gastropods exposed to an increase in the soil cadmium content, over time. There is also little knowledge about how exposure to cadmium-polluted soils influences shell growth and architecture. In this context, we examined cadmium accumulation in the hepatopancreas and shell of juvenile Cantareus aspersus exposed to elevating high levels of cadmium in soil. Also, the toxicity of cadmium to snails was assessed using a range of conchological endpoints, including shell height, width, volume, allometry and integrity. Test snails, aged three months, were reared under semi-field conditions, fed an uncontaminated diet and exposed first, for a period of 30 days, to a series of soil cadmium concentrations, and then, for a second period of 30 days, to soils with higher cadmium content. Cadmium showed a dose-dependent accumulation in both the hepatopancreas and shell. The kinetics of cadmium retention in the hepatopancreas of snails previously exposed to cadmium-spiked soils was significantly influenced by a new exposure event. The shell was not a relevant bioaccumulator for soil cadmium. Under the present experimental conditions, only high cadmium exposure significantly affected either the shell growth or snail survival. There was no consistent effect on shell allometry, but the shell integrity, especially in rapidly growing parts, appeared to be affected by high cadmium exposure. Our results attest to the value of hepatopancreas for describing cadmium retention in land snails and to the difficulty of using conchological parameters in field surveys for estimating the environmental hazard of soil cadmium.


Asunto(s)
Cadmio/farmacocinética , Exposición a Riesgos Ambientales , Caracoles Helix/metabolismo , Contaminantes del Suelo/farmacocinética , Absorción Fisiológica , Exoesqueleto/efectos de los fármacos , Exoesqueleto/metabolismo , Animales , Cadmio/toxicidad , Caracoles Helix/efectos de los fármacos , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Contaminantes del Suelo/toxicidad
5.
PLoS One ; 9(1): e85384, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454856

RESUMEN

Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.


Asunto(s)
Monitoreo del Ambiente , Industrias , Manganeso/metabolismo , Manganeso/toxicidad , Caracoles/efectos de los fármacos , Caracoles/metabolismo , Suelo/química , Animales , Manganeso/análisis
6.
Chem Cent J ; 7(1): 145, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23987502

RESUMEN

BACKGROUND: Given the serious threats posed to terrestrial ecosystems by industrial contamination, environmental monitoring is a standard procedure used for assessing the current status of an environment or trends in environmental parameters. Measurement of metal concentrations at different trophic levels followed by their statistical analysis using exploratory multivariate methods can provide meaningful information on the status of environmental quality. In this context, the present paper proposes a novel chemometric approach to standard statistical methods by combining the Block clustering with Partial least square (PLS) analysis to investigate the accumulation patterns of metals in anthropized terrestrial ecosystems. The present study focused on copper, zinc, manganese, iron, cobalt, cadmium, nickel, and lead transfer along a soil-plant-snai food chain, and the hepatopancreas of the Roman snail (Helix pomatia) was used as a biological end-point of metal accumulation. RESULTS: Block clustering deliniates between the areas exposed to industrial and vehicular contamination. The toxic metals have similar distributions in the nettle leaves and snail hepatopancreas. PLS analysis showed that (1) zinc and copper concentrations at the lower trophic levels are the most important latent factors that contribute to metal accumulation in land snails; (2) cadmium and lead are the main determinants of pollution pattern in areas exposed to industrial contamination; (3) at the sites located near roads lead is the most threatfull metal for terrestrial ecosystems. CONCLUSION: There were three major benefits by applying block clustering with PLS for processing the obtained data: firstly, it helped in grouping sites depending on the type of contamination. Secondly, it was valuable for identifying the latent factors that contribute the most to metal accumulation in land snails. Finally, it optimized the number and type of data that are best for monitoring the status of metallic contamination in terrestrial ecosystems exposed to different kinds of anthropic polution.

8.
Chem Cent J ; 6(1): 156, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23234365

RESUMEN

BACKGROUND: The aim of the paper is to assess by the principal components analysis (PCA) the heavy metal contamination of soil and vegetables widely used as food for people who live in areas contaminated by heavy metals (HMs) due to long-lasting mining activities. This chemometric technique allowed us to select the best model for determining the risk of HMs on the food chain as well as on people's health. RESULTS: Many PCA models were computed with different variables: heavy metals contents and some agro-chemical parameters which characterize the soil samples from contaminated and uncontaminated areas, HMs contents of different types of vegetables grown and consumed in these areas, and the complex parameter target hazard quotients (THQ). Results were discussed in terms of principal component analysis. CONCLUSION: There were two major benefits in processing the data PCA: firstly, it helped in optimizing the number and type of data that are best in rendering the HMs contamination of the soil and vegetables. Secondly, it was valuable for selecting the vegetable species which present the highest/minimum risk of a negative impact on the food chain and human health.

9.
Chem Cent J ; 6(1): 55, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22703871

RESUMEN

BACKGROUND: Copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) can pose serious threats to environmental health because they tend to bioaccumulate in terrestrial ecosystems. We investigated under field conditions the transfer of these heavy metals in a soil-plant-snail food chain in Banat area, Romania. The main goal of this paper was to assess the Roman snail (Helix pomatia) usefulness in environmental monitoring as bioindicator of heavy metal accumulation. Eight sampling sites, selected by different history of heavy metal (HM) exposure, were chosen to be sampled for soil, nettle leaves, and newly matured snails. This study also aimed to identify the putative effects of HM accumulation in the environment on phenotypic variability in selected shell features, which included shell height (SH), relative shell height (RSH), and whorl number (WN). RESULTS: Significantly higher amounts of HMs were accumulated in snail hepatopancreas and not in foot. Cu, Zn, and Cd have biomagnified in the snail body, particularly in the hepatopancreas. In contrast, Pb decreased when going up into the food chain. Zn, Cd, and Pb correlated highly with each other at all levels of the investigated food chain. Zn and Pb exhibited an effective soil-plant transfer, whereas in the snail body only foot Cu concentration was correlated with that in soil. There were significant differences among sampling sites for WN, SH, and RSH when compared with reference snails. WN was strongly correlated with Cd and Pb concentrations in nettle leaves but not with Cu and Zn. SH was independent of HM concentrations in soil, snail hepatopancreas, and foot. However, SH correlated negatively with nettle leaves concentrations for each HM except Cu. In contrast, RSH correlated significantly only with Pb concentration in hepatopancreas. CONCLUSIONS: The snail hepatopancreas accumulates high amounts of HMs, and therefore, this organ can function as a reliable biomarker for tracking HM bioavailability in soil. Long-term exposure to HMs via contaminated food might influence the variability of shell traits in snail populations. Therefore, our results highlight the Roman snail (Helix pomatia) potential to be used in environmental monitoring studies as bioindicator of HM pollution.

10.
Chem Cent J ; 6(1): 19, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22429523

RESUMEN

BACKGROUND: The goal of our study was to evaluate the effects of different medicinal herbs rich in polyphenol (Lemon balm, Sage, St. John's wort and Small-flowered Willowherb) used as dietary supplements on bioaccumulation of some essential metals (Fe, Mn, Zn and Cu) in different chicken meats (liver, legs and breast). RESULTS: In different type of chicken meats (liver, legs and breast) from chickens fed with diets enriched in minerals and medicinal herbs, beneficial metals (Fe, Mn, Zn and Cu) were analysed by flame atomic absorption spectrometry. Fe is the predominant metal in liver and Zn is the predominant metal in legs and breast chicken meats. The addition of metal salts in the feed influences the accumulations of all metals in the liver, legs and breast chicken meat with specific difference to the type of metal and meat. The greatest influences were observed in legs meat for Fe and Mn. Under the influence of polyphenol-rich medicinal herbs, accumulation of metals in the liver, legs and breast chicken meat presents specific differences for each medicinal herb, to the control group that received a diet supplemented with metal salts only. Great influence on all metal accumulation factors was observed in diet enriched with sage, which had significantly positive effect for all type of chicken meats. CONCLUSIONS: Under the influence of medicinal herbs rich in different type of polyphenol, accumulation of metals in the liver, legs and breast chicken meat presents significant differences from the group that received a diet supplemented only with metal salts. Each medicinal herb from diet had a specific influence on the accumulation of metals and generally moderate or poor correlations were observed between total phenols and accumulation of metals. This may be due to antagonism between metal ions and presence of other chelating agents (amino acids and protein) from feeding diets which can act as competitor for complexation of metals and influence accumulation of metals in chicken meat.Graphical abstract.

11.
Chem Cent J ; 5: 64, 2011 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-22017878

RESUMEN

BACKGROUND: The aim of this study is to measure the levels of heavy metals (Fe, Mn, Zn, Cu, Ni, Cd and Pb) found in common vegetables (parsley, carrot, onion, lettuce, cucumber and green beans) grown in contaminated mining areas compared with those grown in reference clear area and to determine their potential detrimental effects via calculation of the daily metal intake (DImetal) and Target Hazard Quotients (THQ) for normal daily consumption of these vegetables, for male and female gender. RESULTS: Compared with the reference in contaminated areas, soil and plant contents of all analyzed metals are higher, usually over normally content for Mn, Zn, Cu, Cd and Pb. Particularly, in soil, higher values than intervention threshold values (ITV) were found for Cu and Pb and higher than maximum allowable limits (MAL) for Zn, Cu, Cd and Pb for parsley roots and leaves, carrot roots, cabbage, lettuce and cucumber. DImetal and THQ values for male and female were calculated for each vegetable and metal and for which oral reference doses exist. The combined THQ values calculated are concerning in that they are usually below the safe level of THQ<1 for all vegetables grown in reference area. In contaminated Moldova Noua (M) area the combined THQ exceeded the safe level only for parsley roots, while in more contaminated Ruschita (R) area combined THQ exceeded the safe level for parsley and carrot roots, lettuce and cabbage. Cd and Pb, most toxic metals to humans, have an increasing prevalence in the combined THQ for leafy (cabbage and lettuce) and fruit vegetables (cucumber). In the root vegetables only Pb has an increasing prevalence in combined THQ values. In all areas female THQ is higher than male THQ. CONCLUSION: The results of this study regarding metal contents in soils, vegetables, DImetal and THQ suggest that the consumption of some vegetables (especially parsley, carrot and cabbage and less for lettuce, cucumber and green beans) is not free of risks in these areas. The complex THQ parameter use in health risk assessment of heavy metals provides a better image than using only a simple parameter (contents of metals in soils and vegetables).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA