Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-37027741

RESUMEN

Augmented Reality (AR) and Virtual Reality (VR) are pushing from the labs towards consumers, especially with social applications. These applications require visual representations of humans and intelligent entities. However, displaying and animating photo-realistic models comes with a high technical cost while low-fidelity representations may evoke eeriness and overall could degrade an experience. Thus, it is important to carefully select what kind of avatar to display. This article investigates the effects of rendering style and visible body parts in AR and VR by adopting a systematic literature review. We analyzed 72 papers that compare various avatar representations. Our analysis includes an outline of the research published between 2015 and 2022 on the topic of avatars and agents in AR and VR displayed using head-mounted displays, covering aspects like visible body parts (e.g., hands only, hands and head, full-body) and rendering style (e.g., abstract, cartoon, realistic); an overview of collected objective and subjective measures (e.g., task performance, presence, user experience, body ownership); and a classification of tasks where avatars and agents were used into task domains (physical activity, hand interaction, communication, game-like scenarios, and education/training). We discuss and synthesize our results within the context of today's AR and VR ecosystem, provide guidelines for practitioners, and finally identify and present promising research opportunities to encourage future research of avatars and agents in AR/VR environments.

3.
J Dev Biol ; 10(4)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36547474

RESUMEN

The development of multicellular organisms requires a tightly coordinated network of cellular processes and intercellular signalling. For more than 20 years, it has been known that primary cilia are deeply involved in the mediation of intercellular signalling and that ciliary dysfunction results in severe developmental defects. Cilia-mediated signalling regulates cellular processes such as proliferation, differentiation, migration, etc. Another cellular process ensuring proper embryonic development is cell death. While the effect of cilia-mediated signalling on many cellular processes has been extensively studied, the relationship between primary cilia and cell death remains largely unknown. This article provides a short review on the current knowledge about this relationship.

5.
J Cell Sci ; 135(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35543155

RESUMEN

Cilia are evolutionarily conserved organelles that orchestrate a variety of signal transduction pathways, such as sonic hedgehog (SHH) signaling, during embryonic development. Our recent studies have shown that loss of GID ubiquitin ligase function results in aberrant AMP-activated protein kinase (AMPK) activation and elongated primary cilia, which suggests a functional connection to cilia. Here, we reveal that the GID complex is an integral part of the cilium required for primary cilia-dependent signal transduction and the maintenance of ciliary protein homeostasis. We show that GID complex subunits localize to cilia in both Xenopus laevis and NIH3T3 cells. Furthermore, we report SHH signaling pathway defects that are independent of AMPK and mechanistic target of rapamycin (MTOR) activation. Despite correct localization of SHH signaling components at the primary cilium and functional GLI3 processing, we find a prominent reduction of some SHH signaling components in the cilium and a significant decrease in SHH target gene expression. Since our data reveal a critical function of the GID complex at the primary cilium, and because suppression of GID function in X. laevis results in ciliopathy-like phenotypes, we suggest that GID subunits are candidate genes for human ciliopathies that coincide with defects in SHH signal transduction.


Asunto(s)
Cilios , Proteínas Hedgehog , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Cilios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ligasas/metabolismo , Ratones , Células 3T3 NIH , Proteostasis , Transducción de Señal/fisiología , Ubiquitinas/metabolismo
6.
Mol Biol Cell ; 32(8): 675-689, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33625872

RESUMEN

A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Antígenos de Neoplasias/fisiología , Axonema/metabolismo , Cuerpos Basales/metabolismo , Proteínas de Ciclo Celular/fisiología , Centriolos/metabolismo , Cilios/fisiología , Ciliopatías/metabolismo , Ciliopatías/fisiopatología , Proteínas del Citoesqueleto/fisiología , Células HEK293 , Humanos , Ratones , Mutación , Células 3T3 NIH , Transducción de Señal
8.
Dev Biol ; 450(2): 141-154, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30953627

RESUMEN

Since 1967, it is known that the loss of GLI3 causes very severe defects in murine eye development. GLI3 is able to act as a transcriptional activator (GLI3-A) or as a transcriptional repressor (GLI3-R). Soon after the discovery of these GLI3 isoforms, the question arose which of the different isoforms is involved in eye formation - GLI3-A, GLI3-R or even both. For several years, this question remained elusive. By analysing the eye morphogenesis of Gli3XtJ/XtJ mouse embryos that lack GLI3-A and GLI3-R and of Gli3Δ699/Δ699 mouse embryos in which only GLI3-A is missing, we revealed that GLI3-A is dispensable in vertebrate eye formation. Remarkably, our study shows that GLI3-R is sufficient for the creation of morphologically normal eyes although the molecular setup deviates substantially from normality. In depth-investigations elucidated that GLI3-R controls numerous key players in eye development and governs lens and retina development at least partially via regulating WNT/ß-CATENIN signalling.


Asunto(s)
Embrión de Mamíferos/embriología , Proteínas del Tejido Nervioso/metabolismo , Organogénesis , Retina/embriología , Vía de Señalización Wnt , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Embrión de Mamíferos/citología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Retina/citología , Proteína Gli3 con Dedos de Zinc/genética
9.
Cells ; 8(3)2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30875746

RESUMEN

Protein degradation is a pivotal process for eukaryotic development and homeostasis. The majority of proteins are degraded by the ubiquitin⁻proteasome system and by autophagy. Recent studies describe a crosstalk between these two main eukaryotic degradation systems which allows for establishing a kind of safety mechanism. If one of these degradation systems is hampered, the other compensates for this defect. The mechanism behind this crosstalk is poorly understood. Novel studies suggest that primary cilia, little cellular protrusions, are involved in the regulation of the crosstalk between the two degradation systems. In this review article, we summarise the current knowledge about the association between cilia, the ubiquitin⁻proteasome system and autophagy.


Asunto(s)
Autofagia , Cilios/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Ciliopatías/patología , Humanos , Transducción de Señal
10.
Dev Biol ; 442(1): 60-68, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30075108

RESUMEN

RPGRIP1L is an evolutionary highly conserved gene encoding a protein that localises at the transition zone of primary cilia. Mutations in RPGRIP1L result in ciliopathies, severe human diseases caused by dysfunctional cilia. Patients with mutations in this gene often suffer from an impaired development of not only one but various organs. To elucidate the function of Rpgrip1l in human development and the mechanisms underlying ciliopathies, different model organisms are used. In this review article, we summarise the findings of these investigations comprising novel functions of Rpgrip1l and the most promising therapeutic approaches.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cilios/genética , Cilios/metabolismo , Modelos Animales de Enfermedad , Humanos , Mutación , Proteostasis , Transducción de Señal
11.
EMBO J ; 37(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29650680

RESUMEN

Ciliopathies are life-threatening human diseases caused by defective cilia. They can often be traced back to mutations of genes encoding transition zone (TZ) proteins demonstrating that the understanding of TZ organisation is of paramount importance. The TZ consists of multimeric protein modules that are subject to a stringent assembly hierarchy. Previous reports place Rpgrip1l at the top of the TZ assembly hierarchy in Caenorhabditis elegans By performing quantitative immunofluorescence studies in RPGRIP1L-/- mouse embryos and human embryonic cells, we recognise a different situation in vertebrates in which Rpgrip1l deficiency affects TZ assembly in a cell type-specific manner. In cell types in which the loss of Rpgrip1l alone does not affect all modules, additional truncation or removal of vertebrate-specific Rpgrip1 results in an impairment of all modules. Consequently, Rpgrip1l and Rpgrip1 synergistically ensure the TZ composition in several vertebrate cell types, revealing a higher complexity of TZ assembly in vertebrates than in invertebrates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Cilios/fisiología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteínas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígenos de Neoplasias , Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular , Estructuras de la Membrana Celular , Células Cultivadas , Proteínas del Citoesqueleto , Embrión de Mamíferos/citología , Fibroblastos/citología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología
12.
Autophagy ; 14(4): 567-583, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29372668

RESUMEN

Previously, macroautophagy/autophagy was demonstrated to be regulated inter alia by the primary cilium. Mutations in RPGRIP1L cause ciliary dysfunctions resulting in severe human diseases summarized as ciliopathies. Recently, we showed that RPGRIP1L deficiency leads to a decreased proteasomal activity at the ciliary base in mice. Importantly, the drug-induced restoration of proteasomal activity does not rescue ciliary length alterations in the absence of RPGRIP1L indicating that RPGRIP1L affects ciliary function also via other mechanisms. Based on this knowledge, we analyzed autophagy in Rpgrip1l-negative mouse embryos. In these embryos, autophagic activity was decreased due to an increased activation of the MTOR complex 1 (MTORC1). Application of the MTORC1 inhibitor rapamycin rescued dysregulated MTORC1, autophagic activity and cilia length but not proteasomal activity in Rpgrip1l-deficient mouse embryonic fibroblasts demonstrating that RPGRIP1L seems to regulate autophagic and proteasomal activity independently from each other.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Fibroblastos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Células Cultivadas , Cilios/metabolismo , Citoplasma/metabolismo , Ratones , Transducción de Señal/fisiología
13.
J Dev Biol ; 5(4)2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29615572

RESUMEN

An incomplete septation of the ventricles in the vertebrate heart that disturbes the strict separation between the contents of the two ventricles is termed a ventricular septal defect (VSD). Together with bicuspid aortic valves, it is the most frequent congenital heart disease in humans. Until now, life-threatening VSDs are usually treated surgically. To avoid surgery and to develop an alternative therapy (e.g., a small molecule therapy), it is necessary to understand the molecular mechanisms underlying ventricular septum (VS) development. Consequently, various studies focus on the investigation of signalling pathways, which play essential roles in the formation of the VS. In the past decade, several reports found evidence for an involvement of Hedgehog (HH) signalling in VS development. In this review article, we will summarise the current knowledge about the association between HH signalling and VS formation and discuss the use of such knowledge to design treatment strategies against the development of VSDs.

14.
Cilia ; 5: 14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27293550

RESUMEN

The primary cilium is an essential structure for the mediation of numerous signaling pathways involved in the coordination and regulation of cellular processes essential for the development and maintenance of health. Consequently, ciliary dysfunction results in severe human diseases called ciliopathies. Since many of the cilia-mediated signaling pathways are oncogenic pathways, cilia are linked to cancer. Recent studies demonstrate the existence of a cilia-regulated proteasome and that this proteasome is involved in cancer development via the progression of oncogenic, cilia-mediated signaling. This review article investigates the association between primary cilia and cancer with particular emphasis on the role of the cilia-regulated proteasome.

15.
J Dev Biol ; 4(3)2016 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615591

RESUMEN

The Hedgehog signalling pathway is evolutionarily highly conserved and essential for embryonic development of invertebrates and vertebrates. Consequently, impaired Hedgehog signalling results in very severe human diseases, ranging from holoprosencephaly to Pallister-Hall syndrome. Due to this great importance for human health, the focus of numerous research groups is placed on the investigation of the detailed mechanisms underlying Hedgehog signalling. Today, it is known that tiny cell protrusions, known as primary cilia, are necessary to mediate Hedgehog signalling in vertebrates. Although the Hedgehog pathway is one of the best studied signalling pathways, many questions remain. One of these questions is: How do primary cilia control Hedgehog signalling in vertebrates? Recently, it was shown that primary cilia regulate a special kind of proteasome which is essential for proper Hedgehog signalling. This review article will cover this novel cilia-proteasome association in embryonic Hedgehog signalling and discuss the possibilities provided by future investigations on this topic.

16.
J Cell Biol ; 210(1): 115-33, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26150391

RESUMEN

Mutations in RPGRIP1L result in severe human diseases called ciliopathies. To unravel the molecular function of RPGRIP1L, we analyzed Rpgrip1l(-/-) mouse embryos, which display a ciliopathy phenotype and die, at the latest, around birth. In these embryos, cilia-mediated signaling was severely disturbed. Defects in Shh signaling suggested that the Rpgrip1l deficiency causes an impairment of protein degradation and protein processing. Indeed, we detected a cilia-dependent decreased proteasomal activity in the absence of Rpgrip1l. We found different proteasomal components localized to cilia and identified Psmd2, a component of the regulatory proteasomal 19S subunit, as an interaction partner for Rpgrip1l. Quantifications of proteasomal substrates demonstrated that Rpgrip1l regulates proteasomal activity specifically at the basal body. Our study suggests that Rpgrip1l controls ciliary signaling by regulating the activity of the ciliary proteasome via Psmd2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cilios/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Centrosoma , Femenino , Masculino , Ratones Endogámicos C3H , Ratones Noqueados , Mitosis , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas
17.
PLoS One ; 8(2): e57545, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23469020

RESUMEN

Ventricular septal defects (VSDs) are the most common congenital heart defects in humans. Despite several studies of the molecular mechanisms involved in ventricular septum (VS) development, very little is known about VS-forming signaling. We observed perimembranous and muscular VSDs in Fantom (Ftm)-negative mice. Since Ftm is a ciliary protein, we investigated presence and function of cilia in murine hearts. Primary cilia could be detected at distinct positions in atria and ventricles at embryonic days (E) 10.5-12.5. The loss of Ftm leads to shortened cilia and a reduced proliferation in distinct atrial and ventricular ciliary regions at E11.5. Consequently, wall thickness is diminished in these areas. We suggest that ventricular proliferation is regulated by cilia-mediated Sonic hedgehog (Shh) and platelet-derived growth factor receptor α (Pdgfrα) signaling. Accordingly, we propose that primary cilia govern the cardiac proliferation which is essential for proper atrial and ventricular wall development and hence for the fully outgrowth of the VS. Thus, our study suggests ciliopathy as a cause of VSDs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Cilios/metabolismo , Tabiques Cardíacos/embriología , Ventrículos Cardíacos/embriología , Animales , Secuencia de Bases , Western Blotting , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C3H , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Development ; 138(10): 2079-88, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21490064

RESUMEN

Primary cilia have essential functions in vertebrate development and signaling. However, little is known about cilia function in brain morphogenesis, a process that is severely affected in human ciliopathies. Here, we study telencephalic morphogenesis in a mouse mutant for the ciliopathy gene Ftm (Rpgrip1l). We show that the olfactory bulbs are present in an ectopic location in the telencephalon of Ftm(-/-) fetuses and do not display morphological outgrowth at the end of gestation. Investigating the developmental origin of this defect, we have established that E12.5 Ftm(-/-) telencephalic neuroepithelial cells lack primary cilia. Moreover, in the anterior telencephalon, the subpallium is expanded at the expense of the pallium, a phenotype reminiscent of Gli3 mutants. This phenotype indeed correlates with a decreased production of the short form of the Gli3 protein. Introduction of a Gli3 mutant allele encoding the short form of Gli3 into Ftm mutants rescues both telencephalic patterning and olfactory bulb morphogenesis, despite the persistence of cilia defects. Together, our results show that olfactory bulb morphogenesis depends on primary cilia and that the essential role of cilia in this process is to produce processed Gli3R required for developmental patterning. Our analysis thus provides the first in vivo demonstration that primary cilia control a developmental process via production of the short, repressor form of Gli3. Moreover, our findings shed light on the developmental origin of olfactory bulb agenesis and of other brain morphogenetic defects found in human diseases affecting the primary cilium.


Asunto(s)
Cilios/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Telencéfalo/embriología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Secuencia de Bases , Tipificación del Cuerpo , Diferenciación Celular , Cartilla de ADN/genética , Femenino , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Microscopía Electrónica de Rastreo , Morfogénesis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Bulbo Olfatorio/citología , Bulbo Olfatorio/embriología , Bulbo Olfatorio/metabolismo , Embarazo , Procesamiento Proteico-Postraduccional , Células Receptoras Sensoriales/citología , Telencéfalo/citología , Telencéfalo/metabolismo , Proteína Gli3 con Dedos de Zinc
19.
Nat Genet ; 39(7): 875-81, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17558409

RESUMEN

Cerebello-oculo-renal syndrome (CORS), also called Joubert syndrome type B, and Meckel (MKS) syndrome belong to the group of developmental autosomal recessive disorders that are associated with primary cilium dysfunction. Using SNP mapping, we identified missense and truncating mutations in RPGRIP1L (KIAA1005) in both CORS and MKS, and we show that inactivation of the mouse ortholog Rpgrip1l (Ftm) recapitulates the cerebral, renal and hepatic defects of CORS and MKS. In addition, we show that RPGRIP1L colocalizes at the basal body and centrosomes with the protein products of both NPHP6 and NPHP4, known genes associated with MKS, CORS and nephronophthisis (a related renal disorder and ciliopathy). In addition, the RPGRIP1L missense mutations found in CORS individuals diminishes the interaction between RPGRIP1L and nephrocystin-4. Our findings show that mutations in RPGRIP1L can cause the multiorgan phenotypic abnormalities found in CORS or MKS, which therefore represent a continuum of the same underlying disorder.


Asunto(s)
Enfermedades Cerebelosas/genética , Trastornos de la Motilidad Ciliar/genética , Encefalocele/genética , Oftalmopatías/genética , Enfermedades Renales/genética , Proteínas/genética , Animales , Niño , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Mutantes , Mutación Puntual , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...