Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37580113

RESUMEN

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Asunto(s)
Discapacidad Intelectual , Leucoencefalopatías , Humanos , Niño , Cuerpo Calloso , Facies , Mutación/genética , Fenotipo , Genotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Síndrome , Discapacidades del Desarrollo/patología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
2.
Genet Med ; 26(3): 101041, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054406

RESUMEN

PURPOSE: The main objective of this study was to assess clinical features and genome-wide DNA methylation profiles in individuals affected by intellectual developmental disorder, autosomal dominant 21 (IDD21) syndrome, caused by variants in the CCCTC-binding factor (CTCF) gene. METHODS: DNA samples were extracted from peripheral blood of 16 individuals with clinical features and genetic findings consistent with IDD21. DNA methylation analysis was performed using the Illumina Infinium Methylation EPIC Bead Chip microarrays. The methylation levels were fitted in a multivariate linear regression model to identify the differentially methylated probes. A binary support vector machine classification model was constructed to differentiate IDD21 samples from controls. RESULTS: We identified a highly specific, reproducible, and sensitive episignature associated with CTCF variants. Six variants of uncertain significance were tested, of which 2 mapped to the IDD21 episignature and clustered alongside IDD21 cases in both heatmap and multidimensional scaling plots. Comparison of the genomic DNA methylation profile of IDD21 with that of 56 other neurodevelopmental disorders provided insights into the underlying molecular pathophysiology of this disorder. CONCLUSION: The robust and specific CTCF/IDD21 episignature expands the growing list of neurodevelopmental disorders with distinct DNA methylation profiles, which can be applied as supporting evidence in variant classification.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidades del Desarrollo/genética , Metilación de ADN/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Síndrome
3.
J Clin Invest ; 133(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36976648

RESUMEN

Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.


Asunto(s)
Ceramidas , Esfingolípidos , Humanos , Ceramidas/metabolismo , Homeostasis , Mutación , Esfingolípidos/genética , Esfingolípidos/metabolismo
5.
Am J Med Genet A ; 191(4): 995-1006, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36584346

RESUMEN

Amniotic band syndrome (ABS) and limb body wall complex (LBWC) have an overlapping phenotype of multiple congenital anomalies and their etiology is unknown. We aimed to determine the prevalence of ABS and LBWC in Europe from 1980 to 2019 and to describe the spectrum of congenital anomalies. In addition, we investigated maternal age and multiple birth as possible risk factors for the occurrence of ABS and LBWC. We used data from the European surveillance of congenital anomalies (EUROCAT) network including data from 30 registries over 1980-2019. We included all pregnancy outcomes, including live births, stillbirths, and terminations of pregnancy for fetal anomalies. ABS and LBWC cases were extracted from the central EUROCAT database using coding information responses from the registries. In total, 866 ABS cases and 451 LBWC cases were included in this study. The mean prevalence was 0.53/10,000 births for ABS and 0.34/10,000 births for LBWC during the 40 years. Prevalence of both ABS and LBWC was lower in the 1980s and higher in the United Kingdom. Limb anomalies and neural tube defects were commonly seen in ABS, whereas in LBWC abdominal and thoracic wall defects and limb anomalies were most prevalent. Twinning was confirmed as a risk factor for both ABS and LBWC. This study includes the largest cohort of ABS and LBWC cases ever reported over a large time period using standardized EUROCAT data. Prevalence, clinical characteristics, and the phenotypic spectrum are described, and twinning is confirmed as a risk factor.


Asunto(s)
Anomalías Múltiples , Síndrome de Bandas Amnióticas , Embarazo , Humanos , Femenino , Recién Nacido , Síndrome de Bandas Amnióticas/complicaciones , Anomalías Múltiples/epidemiología , Europa (Continente)/epidemiología , Edad Materna , Mortinato/epidemiología , Sistema de Registros , Prevalencia
6.
Transl Psychiatry ; 12(1): 421, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182950

RESUMEN

CHD8, a major autism gene, functions in chromatin remodelling and has various roles involving several biological pathways. Therefore, unsurprisingly, previous studies have shown that intellectual developmental disorder with autism and macrocephaly (IDDAM), the syndrome caused by pathogenic variants in CHD8, consists of a broad range of phenotypic abnormalities. We collected and reviewed 106 individuals with IDDAM, including 36 individuals not previously published, thus enabling thorough genotype-phenotype analyses, involving the CHD8 mutation spectrum, characterization of the CHD8 DNA methylation episignature, and the systematic analysis of phenotypes collected in Human Phenotype Ontology (HPO). We identified 29 unique nonsense, 25 frameshift, 24 missense, and 12 splice site variants. Furthermore, two unique inframe deletions, one larger deletion (exons 26-28), and one translocation were observed. Methylation analysis was performed for 13 patients, 11 of which showed the previously established episignature for IDDAM (85%) associated with CHD8 haploinsufficiency, one analysis was inconclusive, and one showing a possible gain-of-function signature instead of the expected haploinsufficiency signature was observed. Consistent with previous studies, phenotypical abnormalities affected multiple organ systems. Many neurological abnormalities, like intellectual disability (68%) and hypotonia (29%) were observed, as well as a wide variety of behavioural abnormalities (88%). Most frequently observed behavioural problems included autism spectrum disorder (76%), short attention span (32%), abnormal social behaviour (31%), sleep disturbance (29%) and impaired social interactions (28%). Furthermore, abnormalities in the digestive (53%), musculoskeletal (79%) and genitourinary systems (18%) were noted. Although no significant difference in severity was observed between males and females, individuals with a missense variant were less severely affected. Our study provides an extensive review of all phenotypic abnormalities in patients with IDDAM and provides clinical recommendations, which will be of significant value to individuals with a pathogenic variant in CHD8, their families, and clinicians as it gives a more refined insight into the clinical and molecular spectrum of IDDAM, which is essential for accurate care and counselling.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Megalencefalia , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Proteínas de Unión al ADN/genética , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Fenotipo , Factores de Transcripción/genética
7.
Nat Genet ; 54(6): 861-873, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35681054

RESUMEN

Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes establish and maintain chromatin accessibility and gene expression, and are frequently perturbed in cancer. Clear cell meningioma (CCM), an aggressive tumor of the central nervous system, is uniformly driven by loss of SMARCE1, an integral subunit of the mSWI/SNF core. Here, we identify a structural role for SMARCE1 in selectively stabilizing the canonical BAF (cBAF) complex core-ATPase module interaction. In CCM, cBAF complexes fail to stabilize on chromatin, reducing enhancer accessibility, and residual core module components increase the formation of BRD9-containing non-canonical BAF (ncBAF) complexes. Combined attenuation of cBAF function and increased ncBAF complex activity generates the CCM-specific gene expression signature, which is distinct from that of NF2-mutated meningiomas. Importantly, SMARCE1-deficient cells exhibit heightened sensitivity to small-molecule inhibition of ncBAF complexes. These data inform the function of a previously elusive SWI/SNF subunit and suggest potential therapeutic approaches for intractable SMARCE1-deficient CCM tumors.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Animales , Cromatina , Ensamble y Desensamble de Cromatina/genética , Mamíferos/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Factores de Transcripción/metabolismo
8.
Genet Med ; 24(8): 1753-1760, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35579625

RESUMEN

PURPOSE: Genome-wide sequencing is increasingly being performed during pregnancy to identify the genetic cause of congenital anomalies. The interpretation of prenatally identified variants can be challenging and is hampered by our often limited knowledge of prenatal phenotypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we collected clinical data from patients with a prenatal phenotype and a pathogenic variant in one of the CSS-associated genes. METHODS: Clinical data was collected through an extensive web-based survey. RESULTS: We included 44 patients with a variant in a CSS-associated gene and a prenatal phenotype; 9 of these patients have been reported before. Prenatal anomalies that were frequently observed in our cohort include hydrocephalus, agenesis of the corpus callosum, hypoplastic left heart syndrome, persistent left vena cava, diaphragmatic hernia, renal agenesis, and intrauterine growth restriction. Anal anomalies were frequently identified after birth in patients with ARID1A variants (6/14, 43%). Interestingly, pathogenic ARID1A variants were much more frequently identified in the current prenatal cohort (16/44, 36%) than in postnatal CSS cohorts (5%-9%). CONCLUSION: Our data shed new light on the prenatal phenotype of patients with pathogenic variants in CSS genes.


Asunto(s)
Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Anomalías Múltiples , Proteínas Cromosómicas no Histona/genética , Cara/anomalías , Estudios de Asociación Genética , Deformidades Congénitas de la Mano/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Micrognatismo/genética , Cuello/anomalías , Fenotipo
9.
Genet Med ; 24(8): 1774-1780, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567594

RESUMEN

PURPOSE: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease. METHODS: Among the 1000 probands studied with developmental delay and intellectual disability in our database, we found 2 patients with de novo LoF variants in SRRM2. Additional families were identified through GeneMatcher. RESULTS: Here, we report on 22 patients with LoF variants in SRRM2 and provide a description of the phenotype. Molecular analysis identified 12 frameshift variants, 8 nonsense variants, and 2 microdeletions of 66 kb and 270 kb. The patients presented with a mild developmental delay, predominant speech delay, autistic or attention-deficit/hyperactivity disorder features, overfriendliness, generalized hypotonia, overweight, and dysmorphic facial features. Intellectual disability was variable and mild when present. CONCLUSION: We established SRRM2 as a gene responsible for a rare neurodevelopmental disease.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteínas de Unión al ARN/genética , Niño , Discapacidades del Desarrollo/genética , Humanos , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Fenotipo
10.
Hum Mutat ; 43(5): 582-594, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170830

RESUMEN

Auriculocondylar syndrome (ACS) is a rare craniofacial disorder characterized by mandibular hypoplasia and an auricular defect at the junction between the lobe and helix, known as a "Question Mark Ear" (QME). Several additional features, originating from the first and second branchial arches and other tissues, have also been reported. ACS is genetically heterogeneous with autosomal dominant and recessive modes of inheritance. The mutations identified to date are presumed to dysregulate the endothelin 1 signaling pathway. Here we describe 14 novel cases and reassess 25 published cases of ACS through a questionnaire for systematic data collection. All patients harbor mutation(s) in PLCB4, GNAI3, or EDN1. This series of patients contributes to the characterization of additional features occasionally associated with ACS such as respiratory, costal, neurodevelopmental, and genital anomalies, and provides management and monitoring recommendations.


Asunto(s)
Enfermedades del Oído , Oído/anomalías , Enfermedades del Oído/genética , Humanos , Linaje , Fenotipo
11.
Eur J Hum Genet ; 30(3): 271-281, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34521999

RESUMEN

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, an intellectual disability syndrome first described in 2016, is caused by heterozygous loss-of-function variants in SON. Its encoded protein promotes pre-mRNA splicing of many genes essential for development. Whereas individual phenotypic traits have previously been linked to erroneous splicing of SON target genes, the phenotypic spectrum and the pathogenicity of missense variants have not been further evaluated. We present the phenotypic abnormalities in 52 individuals, including 17 individuals who have not been reported before. In total, loss-of-function variants were detected in 49 individuals (de novo in 47, inheritance unknown in 2), and in 3, a missense variant was observed (2 de novo, 1 inheritance unknown). Phenotypic abnormalities, systematically collected and analyzed in Human Phenotype Ontology, were found in all organ systems. Significant inter-individual phenotypic variability was observed, even in individuals with the same recurrent variant (n = 13). SON haploinsufficiency was previously shown to lead to downregulation of downstream genes, contributing to specific phenotypic features. Similar functional analysis for one missense variant, however, suggests a different mechanism than for heterozygous loss-of-function. Although small in numbers and while pathogenicity of these variants is not certain, these data allow for speculation whether de novo missense variants cause ZTTK syndrome via another mechanism, or a separate overlapping syndrome. In conclusion, heterozygous loss-of-function variants in SON define a recognizable syndrome, ZTTK, associated with a broad, severe phenotypic spectrum, characterized by a large inter-individual variability. These observations provide essential information for affected individuals, parents, and healthcare professionals to ensure appropriate clinical management.


Asunto(s)
Proteínas de Unión al ADN , Discapacidad Intelectual , Antígenos de Histocompatibilidad Menor , Proteínas de Unión al ADN/genética , Humanos , Discapacidad Intelectual/genética , Antígenos de Histocompatibilidad Menor/genética , Mutación Missense , Fenotipo , Síndrome
12.
Genes (Basel) ; 12(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34440449

RESUMEN

ARID1B is one of the most frequently mutated genes in intellectual disability (~1%). Most variants are readily classified, since they are de novo and are predicted to lead to loss of function, and therefore classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines for the interpretation of sequence variants. However, familial loss-of-function variants can also occur and can be challenging to interpret. Such variants may be pathogenic with variable expression, causing only a mild phenotype in a parent. Alternatively, since some regions of the ARID1B gene seem to be lacking pathogenic variants, loss-of-function variants in those regions may not lead to ARID1B haploinsufficiency and may therefore be benign. We describe 12 families with potential loss-of-function variants, which were either familial or with unknown inheritance and were in regions where pathogenic variants have not been described or are otherwise challenging to interpret. We performed detailed clinical and DNA methylation studies, which allowed us to confidently classify most variants. In five families we observed transmission of pathogenic variants, confirming their highly variable expression. Our findings provide further evidence for an alternative translational start site and we suggest updates for the ACMG guidelines for the interpretation of sequence variants to incorporate DNA methylation studies and facial analyses.


Asunto(s)
Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Factores de Transcripción/genética , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Niño , Cara/anomalías , Femenino , Regulación de la Expresión Génica/genética , Deformidades Congénitas de la Mano/epidemiología , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/fisiopatología , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/fisiopatología , Mutación con Pérdida de Función/genética , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
13.
Hum Genet ; 140(8): 1229-1239, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34159400

RESUMEN

The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified.


Asunto(s)
Heterogeneidad Genética , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , Mutación , Factores de Transcripción/genética , Enzimas Activadoras de Ubiquitina/genética , Secuencia de Bases , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Expresión Génica , Pruebas Genéticas , Humanos , Lactante , Deformidades Congénitas de las Extremidades/metabolismo , Deformidades Congénitas de las Extremidades/patología , Masculino , Linaje , Factores de Transcripción/deficiencia , Enzimas Activadoras de Ubiquitina/deficiencia , Secuenciación Completa del Genoma
14.
Nat Commun ; 11(1): 5797, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199684

RESUMEN

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.


Asunto(s)
Proteínas Argonautas/genética , Células Germinativas/metabolismo , Mutación/genética , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Interferencia de ARN , Adolescente , Animales , Proteínas Argonautas/química , Niño , Preescolar , Análisis por Conglomerados , Dendritas/metabolismo , Fibroblastos/metabolismo , Silenciador del Gen , Células HEK293 , Hipocampo/patología , Humanos , Ratones , Simulación de Dinámica Molecular , Neuronas/metabolismo , Fosforilación , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Ratas , Transcriptoma/genética
15.
Clin Genet ; 97(6): 890-901, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32266967

RESUMEN

Primrose syndrome (PS; MIM# 259050) is characterized by intellectual disability (ID), macrocephaly, unusual facial features (frontal bossing, deeply set eyes, down-slanting palpebral fissures), calcified external ears, sparse body hair and distal muscle wasting. The syndrome is caused by de novo heterozygous missense variants in ZBTB20. Most of the 29 published patients are adults as characteristics appear more recognizable with age. We present 13 hitherto unpublished individuals and summarize the clinical and molecular findings in all 42 patients. Several signs and symptoms of PS develop during childhood, but the cardinal features, such as calcification of the external ears, cystic bone lesions, muscle wasting, and contractures typically develop between 10 and 16 years of age. Biochemically, anemia and increased alpha-fetoprotein levels are often present. Two adult males with PS developed a testicular tumor. Although PS should be regarded as a progressive entity, there are no indications that cognition becomes more impaired with age. No obvious genotype-phenotype correlation is present. A subgroup of patients with ZBTB20 variants may be associated with mild, nonspecific ID. Metabolic investigations suggest a disturbed mitochondrial fatty acid oxidation. We suggest a regular surveillance in all adult males with PS until it is clear whether or not there is a truly elevated risk of testicular cancer.


Asunto(s)
Anomalías Múltiples/genética , Calcinosis/genética , Enfermedades del Oído/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Megalencefalia/genética , Atrofia Muscular/genética , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Anomalías Múltiples/patología , Acetil-CoA C-Aciltransferasa/genética , Adolescente , Adulto , Calcinosis/patología , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Niño , Preescolar , Enfermedades del Oído/patología , Enoil-CoA Hidratasa/genética , Cara/anomalías , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Megalencefalia/patología , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/patología , Atrofia Muscular/patología , Mutación , Mutación Missense/genética , Fenotipo , Racemasas y Epimerasas/genética , Neoplasias Testiculares , Adulto Joven
16.
Eur J Hum Genet ; 28(6): 763-769, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32157189

RESUMEN

Previously, intragenic CAMTA1 copy number variants (CNVs) have been shown to cause non-progressive, congenital ataxia with or without intellectual disability (OMIM#614756). However, ataxia, intellectual disability, and dysmorphic features were all incompletely penetrant, even within families. Here, we describe four patients with de novo nonsense, frameshift or missense CAMTA1 variants. All four patients predominantly manifested features of ataxia and/or spasticity. Borderline intellectual disability and dysmorphic features were both present in one patient only, and other neurological and behavioural symptoms were variably present. Neurodevelopmental delay was found to be mild. Our findings indicate that also nonsense, frameshift and missense variants in CAMTA1 can cause a spastic ataxia syndrome as the main phenotype.


Asunto(s)
Ataxia/genética , Proteínas de Unión al Calcio/genética , Discapacidad Intelectual/genética , Espasticidad Muscular/genética , Transactivadores/genética , Ataxia/patología , Niño , Preescolar , Femenino , Humanos , Discapacidad Intelectual/patología , Masculino , Espasticidad Muscular/patología , Mutación , Fenotipo , Síndrome , Adulto Joven
17.
Hum Mutat ; 41(5): 1042-1050, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32097528

RESUMEN

Pathogenic variants in ZMYND11, which acts as a transcriptional repressor, have been associated with intellectual disability, behavioral abnormalities, and seizures. Only 11 affected individuals have been reported to date, and the phenotype associated with pathogenic variants in this gene have not been fully defined. Here, we present 16 additional patients with predicted pathogenic heterozygous variants in including four individuals from the same family, to further delineate and expand the genotypic and phenotypic spectrum of ZMYND11-related syndromic intellectual disability. The associated phenotype includes developmental delay, particularly affecting speech, mild-moderate intellectual disability, significant behavioral abnormalities, seizures, and hypotonia. There are subtle shared dysmorphic features, including prominent eyelashes and eyebrows, a depressed nasal bridge with bulbous nasal tip, anteverted nares, thin vermilion of the upper lip, and wide mouth. Novel features include brachydactyly and tooth enamel hypoplasia. Most identified variants are likely to result in premature truncation and/or nonsense-mediated decay. Two ZMYND11 variants located in the final exon-p.(Gln586*) (likely escaping nonsense-mediated decay) and p.(Cys574Arg)-are predicted to disrupt the MYND-type zinc-finger motif and likely interfere with binding to its interaction partners. Hence, the homogeneous phenotype likely results from a common mechanism of loss-of-function.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Alelos , Niño , Preescolar , Facies , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Haploinsuficiencia , Humanos , Masculino , Mutación , Degradación de ARNm Mediada por Codón sin Sentido , Fenotipo , Síndrome , Dedos de Zinc
18.
Genet Med ; 22(3): 524-537, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31578471

RESUMEN

PURPOSE: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved. METHODS: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated. RESULTS: Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated. CONCLUSIONS: This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features.


Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción SOXD/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Haploinsuficiencia/genética , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/diagnóstico , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/patología , Masculino , Mutación Missense/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/patología , Linaje , Fenotipo , Adulto Joven
19.
J Hum Genet ; 65(3): 305-311, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31827252

RESUMEN

HARS2 encodes mitochondrial histidyl-tRNA synthetase (HARS2), which links histidine to its cognate tRNA in the mitochondrial matrix. Biallelic variants in HARS2 are associated with Perrault syndrome, a rare recessive condition characterized by sensorineural hearing loss in both sexes and primary ovarian insufficiency in 46,XX females. Some individuals with Perrault syndrome have a broader phenotypic spectrum with neurological features, including ataxia and peripheral neuropathy. Here, we report a recurrent variant in HARS2 in association with sensorineural hearing loss. In affected individuals from three unrelated families, the variant HARS2 c.1439G>A p.(Arg480His) is present as a heterozygous variant in trans to a putative pathogenic variant. The low prevalence of the allele HARS2 c.1439G>A p.(Arg480His) in the general population and its presence in three families with hearing loss, confirm the pathogenicity of this variant and illustrate the presentation of Perrault syndrome as nonsyndromic hearing loss in males and prepubertal females.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Predisposición Genética a la Enfermedad , Pérdida Auditiva Sensorineural/genética , Histidina-ARNt Ligasa/genética , Alelos , Niño , Preescolar , Exoma/genética , Femenino , Disgenesia Gonadal 46 XX/genética , Disgenesia Gonadal 46 XX/fisiopatología , Pérdida Auditiva Sensorineural/fisiopatología , Heterocigoto , Homocigoto , Humanos , Lactante , Masculino , Mitocondrias/genética , Mutación Missense/genética , Linaje , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/fisiopatología
20.
Am J Med Genet C Semin Med Genet ; 181(4): 611-626, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31730271

RESUMEN

The nuclear factor one (NFI) site-specific DNA-binding proteins represent a family of transcription factors that are important for the development of multiple organ systems, including the brain. During brain development in mice, the expression patterns of Nfia, Nfib, and Nfix overlap, and knockout mice for each of these exhibit overlapping brain defects, including megalencephaly, dysgenesis of the corpus callosum, and enlarged ventricles, which implies a common but not redundant function in brain development. In line with these models, human phenotypes caused by haploinsufficiency of NFIA, NFIB, and NFIX display significant overlap, sharing neurodevelopmental deficits, macrocephaly, brain anomalies, and variable somatic overgrowth. Other anomalies may be present depending on the NFI gene involved. The possibility of variants in NFI genes should therefore be considered in individuals with intellectual disability and brain overgrowth, with individual NFI-related conditions being differentiated from one another by additional signs and symptoms. The exception is provided by specific NFIX variants that act in a dominant negative manner, as these cause a recognizable entity with more severe cognitive impairment and marked bone dysplasia, Marshall-Smith syndrome. NFIX duplications are associated with a phenotype opposite to that of haploinsufficiency, characterized by short stature, small head circumference, and delayed bone age. The spectrum of NFI-related disorders will likely be further expanded, as larger cohorts are assessed.


Asunto(s)
Crecimiento/genética , Mutación , Factores de Transcripción NFI/genética , Anomalías Múltiples/genética , Animales , Enfermedades del Desarrollo Óseo/genética , Anomalías Craneofaciales/genética , Duplicación de Gen , Trastornos del Crecimiento/genética , Humanos , Ratones , Displasia Septo-Óptica/genética , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...