Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1761(7): 725-35, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16725371

RESUMEN

Arv1p is involved in the regulation of cellular lipid homeostasis in the yeast Saccharomyces cerevisiae. Here, we report the characterization of the two Arabidopsis thaliana ARV genes and the encoded proteins, AtArv1p and AtArv2p. The functional identity of AtArv1p and AtArv2p was demonstrated by complementation of the thermosensitive phenotype of the arv1Delta yeast mutant strain YJN1756. Both A. thaliana proteins contain the bipartite Arv1 homology domain (AHD), which consists of an NH(2)-terminal cysteine-rich subdomain with a putative zinc-binding motif followed by a C-terminal subdomain of 33 amino acids. Removal of the cysteine-rich subdomain has no effect on Arvp activity, whereas the presence of the C-terminal subdomain of the AHD is critical for Arvp function. Localization experiments of AtArv1p and AtArv2p tagged with green fluorescent protein (GFP) and expressed in onion epidermal cells demonstrated that both proteins are exclusively targeted to the endoplasmic reticulum. Analysis of beta-glucuronidase (GUS) activity in transgenic A. thaliana plants carrying chimeric ARV1::GUS and ARV2::GUS genes showed that ARV gene promoters direct largely overlapping patterns of expression that are restricted to tissues in which cells are actively dividing or expanding. The results of this study support the notion that plants, yeast and mammals share common molecular mechanisms regulating intracellular lipid homeostasis.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Secuencia de Aminoácidos , Clonación Molecular , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Homeostasis , Lípidos/fisiología , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
2.
J Biol Chem ; 280(43): 35904-13, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16120615

RESUMEN

erg26-1ts cells harbor defects in the 4alpha-carboxysterol-C3 dehydrogenase activity necessary for conversion of 4,4-dimethylzymosterol to zymosterol. Mutant cells accumulate toxic 4-carboxysterols and are inviable at high temperature. A genetic screen aimed at cloning recessive mutations remediating the temperature sensitive growth defect has resulted in the isolation of four complementation groups, ets1-4 (erg26-1ts temperature sensitive suppressor). We describe the characterization of ets1-1 and ets2-1. Gas chromatography/mass spectrometry analyses demonstrate that erg26-1ts ets1-1 and erg26-1ts ets2-1 cells do not accumulate 4-carboxysterols, rather these cells have increased levels of squalene and squalene epoxide, respectively. ets1-1 and ets2-1 cells accumulate these same sterol intermediates. Chromosomal integration of ERG1 ERG7 at their loci in erg26-1ts ets1-1 and erg26-1ts and ets2-1 mutants, respectively, results in the loss of accumulation of squalene and squalene epoxide, re-accumulation of 4-carboxysterols and cell inviability at high temperature. Enzymatic assays demonstrate that mutants harboring the ets1-1 allele have decreased squalene epoxidase activity, while those containing the ets2-1 allele show weakened oxidosqualene cyclase activity. Thus, ETS1 and ETS2 are allelic to ERG1 and ERG7, respectively. We have mapped mutations within the erg1-1/ets1-1 (G247D) and erg7-1/ets2-1 (D530N, V615E) alleles that suppress the inviability of erg26-1ts at high temperature, and cause accumulation of sterol intermediates and decreased enzymatic activities. Finally using erg1-1 and erg7-1 mutant strains, we demonstrate that the expression of the ERG25/26/27 genes required for zymosterol biosynthesis are coordinately transcriptionally regulated, along with ERG1 and ERG7, in response to blocks in sterol biosynthesis. Transcriptional regulation requires the transcription factors, Upc2p and Ecm22p.


Asunto(s)
Colesterol/biosíntesis , Regulación Fúngica de la Expresión Génica , Esteroles/metabolismo , Transcripción Genética , Alelos , Northern Blotting , Western Blotting , Proliferación Celular , Colesterol/química , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Prueba de Complementación Genética , Operón Lac , Modelos Biológicos , Mutación , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Escualeno/análogos & derivados , Escualeno/química , Esteroles/química , Temperatura , beta-Galactosidasa/metabolismo
3.
J Biol Chem ; 280(6): 4270-8, 2005 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-15561700

RESUMEN

Loss of function of either the RVS161 or RVS167 Saccharomyces cerevisiae amphiphysin-like gene confers similar growth phenotypes that can be suppressed by mutations in sphingolipid biosynthesis. We performed a yeast two-hybrid screen using Rvs161p as bait to uncover proteins involved in this sphingolipid-dependent suppressor pathway. In the process, we have demonstrated a direct physical interaction between Rvs167p and the two-hybrid interacting proteins, Acf2p, Gdh3p, and Ybr108wp, while also elucidating the Rvs167p amino acid domains to which these proteins bind. By using subcellular fractionation, we demonstrate that Rvs167p, Ybr108wp, Gdh3p, and Acf2p all localize to Rvs161p-containing lipid rafts, thus placing them within a single compartment that should facilitate their interactions. Moreover, our results suggest that Acf2p and Gdh3p functions are needed for suppressor pathway activity. To determine pathway mechanisms further, we examined the localization of Rvs167p in suppressor mutants. These studies reveal roles for Rvs161p and the very long chain fatty acid elongase, Sur4p, in the localization and/or stability of Rvs167p. Previous yeast studies showed that rvs defects could be suppressed by changes in sphingolipid metabolism brought about by deleting SUR4 (Desfarges, L., Durrens, P., Juguelin, H., Cassagne, C., Bonneu, M., and Aigle, M. (1993) Yeast 9, 267-277). Using rvs167 sur4 and rvs161 sur4 double null cells as models to study suppressor pathway activity, we demonstrate that loss of SUR4 does not remediate the steady-state actin cytoskeletal defects of rvs167 or rvs161 cells. Moreover, suppressor activity does not require the function of the actin-binding protein, Abp1p, or Sla1p, a protein that is thought to regulate assembly of the cortical actin cytoskeleton. Based on our results, we suggest that sphingolipid-dependent suppression of rvs defects may not work entirely through regulating changes in actin organization.


Asunto(s)
Proteínas del Citoesqueleto/química , Proteínas del Tejido Nervioso/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Esfingolípidos/metabolismo , Acetiltransferasas , Actinas/química , Actinas/metabolismo , Alelos , Western Blotting , Citoesqueleto/metabolismo , Epítopos/química , Eliminación de Gen , Glucano Endo-1,3-beta-D-Glucosidasa/química , Inmunoprecipitación , Operón Lac , Lípidos/química , Meiosis , Microdominios de Membrana/química , Proteínas de Microfilamentos , Microscopía Fluorescente , Mutación , Fenotipo , Plásmidos/metabolismo , Prolina/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolípidos/química , Fracciones Subcelulares , Temperatura , Técnicas del Sistema de Dos Híbridos , beta-Galactosidasa/metabolismo
4.
J Biol Chem ; 277(39): 36152-60, 2002 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-12145310

RESUMEN

arv1Delta mutant cells have an altered sterol distribution within cell membranes (Tinkelenberg, A.H., Liu, Y., Alcantara, F., Khan, S., Guo, Z., Bard, M., and Sturley, S. L. (2000) J. Biol. Chem. 275, 40667-40670), and thus it has been suggested that Arv1p may be involved in the trafficking of sterol in the yeast Saccharomyces cerevisiae and also in humans. Here we present data showing that arv1Delta mutants also harbor defects in sphingolipid metabolism. [(3)H]inositol and [(3)H]dihydrosphingosine radiolabeling studies demonstrated that mutant cells had reduced rates of biosynthesis and lower steady-state levels of complex sphingolipids while accumulating certain hydroxylated ceramide species. Phospholipid radiolabeling studies showed that arv1Delta cells harbored defects in the rates of biosynthesis and steady-state levels of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. Neutral lipid radiolabeling studies indicated that the rate of biosynthesis and steady-state levels of sterol ester were increased in arv1Delta cells. Moreover, these same studies demonstrated that arv1Delta cells had decreased rates of biosynthesis and steady-state levels of total fatty acid and fatty acid alcohols. Gas chromatography/mass spectrometry analyses examining different fatty acid species showed that arv1Delta cells had decreased levels of C18:1 fatty acid. Additional gas chromatography/mass spectrometry analyses determining the levels of various molecular sterol species in arv1Delta cells showed that mutant cells accumulated early sterol intermediates. Using fluorescence microscopy we found that GFP-Arv1p localizes to the endoplasmic reticulum and Golgi. Interestingly, the heterologous expression of the human ARV1 cDNA suppressed the sphingolipid metabolic defects of arv1Delta cells. We hypothesize that in eukaryotic cells, Arv1p functions in the sphingolipid metabolic pathway perhaps as a transporter of ceramides between the endoplasmic reticulum and Golgi.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Ceramidas/metabolismo , ADN Complementario/metabolismo , Retículo Endoplásmico/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Prueba de Complementación Genética , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes , Humanos , Inositol/metabolismo , Metabolismo de los Lípidos , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/química , Microscopía Fluorescente , Mutación , Plásmidos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esfingosina/metabolismo , Temperatura , Factores de Tiempo
5.
J Biol Chem ; 277(29): 26177-84, 2002 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-12006573

RESUMEN

We had previously isolated the temperature-sensitive erg26-1 mutant and characterized the sterol defects in erg26-1 cells (Baudry, K., Swain, E., Rahier, A., Germann, M., Batta, A., Rondet, S., Mandala, S., Henry, K., Tint, G. S., Edlind, T., Kurtz, M., and Nickels, J. T., Jr. (2001) J. Biol. Chem. 276, 12702-12711). We have now determined the defects in sphingolipid metabolism in erg26-1 cells, examined their effects on cell growth, and initiated studies designed to elucidate how might changes in sterol levels coordinately regulate sphingolipid metabolism in Saccharomyces cerevisiae. Using [(3)H]inositol radiolabeling studies, we found that the biosynthetic rate and steady-state levels of specific hydroxylated forms of inositolphosphorylceramides were decreased in erg26-1 cells when compared with wild type cells. [(3)H]Dihydrosphingosine radiolabeling studies demonstrated that erg26-1 cells had decreased levels of the phytosphingosine-derived ceramides that are the direct precursors of the specific hydroxylated inositol phosphorylceramides found to be lower in these cells. Gene dosage experiments using the sphingolipid long chain sphingoid base (LCB) hydroxylase gene, SUR2, suggest that erg26-1 cells may accumulate LCB, thus placing one point of sterol regulation of sphingolipid synthesis possibly at the level of ceramide metabolism. The results from additional genetic studies using the sphingolipid hydroxylase and copper transporter genes, SCS7 and CCC2, respectively, suggest a second possible point of sterol regulation at the level of complex sphingolipid hydroxylation. In addition, [(3)H]inositol radiolabeling of sterol biosynthesis inhibitor-treated wild type cells and late sterol pathway mutants showed that additional blocks in sterol biosynthesis have profound effects on sphingolipid metabolism, particularly sphingolipid hydroxylation state. Finally, our genetic studies in erg26-1 cells using the LCB phosphate phosphatase gene, LBP1, suggest that increasing the levels of the LCB sphingoid base phosphate can remediate the temperature-sensitive phenotype of erg26-1 cells.


Asunto(s)
Carboxiliasas/fisiología , Colesterol , Saccharomyces cerevisiae/enzimología , Esfingolípidos/metabolismo , Carboxiliasas/genética , Colestadienoles/metabolismo , Modelos Químicos , Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA