Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Allergy ; 3: 870513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769584

RESUMEN

The symptoms of food allergies vary significantly between individuals, likely due to genetic determinants. In humans, allergy development is initiated by antigen-presenting cells via class II human leukocyte antigen (HLA-II). The HLA-II gene is highly polymorphic, and its allelic variance is thought to influence the susceptibility of individuals to a particular allergen. However, whether antigen presentation by different HLA-II variants contributes to symptom variation is not clear. We hypothesized that HLA-II allelic variance affects symptom phenotypes, including immediate physical reactions and delayed behavioral changes, in individuals with food hypersensitivity. To test our hypothesis, male and female mice of three transgenic strains expressing an HLA-II variant, DR3, DR15, or DQ8, were used to establish a cow's milk allergy model. Mice were sensitized to a bovine whey allergen, ß-lactoglobulin (BLG; Bos d 5), weekly for 5 weeks, followed by an acute oral allergen challenge. At 30 min post-challenge, BLG-sensitized DR3 mice showed moderate to severe anaphylaxis resulting in perioral redness, swelling, and death. In contrast, DQ8 and DR15 mice were generally asymptomatic. The production of allergen-specific immunoglobulins was also HLA- and sex-dependent. Both male and female DR3 and female DR15 mice significantly increased BLG-specific IgE production, while robust elevation in BLG-specific IgG1 was observed in sensitized DQ8 mice of both sexes and, to a lesser extent, in DR15 males. Furthermore, BLG-sensitized DR15 mice showed sex-specific behavior changes, with males exhibiting mobility changes and anxiety-like behavior and females showing spatial memory impairment. When splenocytes from transgenic mice were stimulated in vitro with BLG, phenotypes of immune cells were HLA- and sex-specific, further underscoring the influence of HLA-II on immune responses. Our results support that HLA-II alleles influence behavioral responses in addition to immune and physical reactions of food allergy, suggesting that certain HLA-II variants may predispose individuals to food-allergy-associated behavioral changes.

2.
Cells ; 11(4)2022 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35203387

RESUMEN

Mast cells (MCs) are the major effector cells of allergic responses and reside throughout the body, including in the brain and meninges. Previously, we showed in a mouse model of subclinical cow's milk allergy that brain MC numbers were elevated in sensitized mice. However, the neurophysiological consequences of intracranial MC accumulation and activation are unclear. We hypothesized that centrally recruited MCs in sensitized mice could be activated by the allergen via the IgE/FcεRI mechanism and increase the blood-brain barrier (BBB) permeability to promote neuroinflammation. Furthermore, we suspected that repeated allergen exposure could sustain MC activation. To investigate our hypothesis, we sensitized C57BL6/J mice to a bovine whey allergen, ß-lactoglobulin (BLG), and subsequently placed them on a whey-containing diet for two weeks. MC activity and associated changes in the brain were examined. BLG-sensitized mice showed mobility changes and depression-like behavior with significantly increased MC numbers and histamine levels in select brain regions. IgG extravasation and perivascular astrogliosis were also evident. Importantly, myelin staining revealed cortical demyelination in the BLG-sensitized mice, suggesting a potential neural substrate for their behavioral changes. Our findings support the ability of brain MCs to release histamine and other mediators to increase BBB permeability and facilitate neuroinflammatory responses in the brain.


Asunto(s)
Hipersensibilidad a los Alimentos , Mastocitos , Alérgenos , Animales , Bovinos , Femenino , Histamina , Inmunoglobulina E , Lactoglobulinas , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias
3.
Brain Behav Immun ; 95: 122-141, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33705867

RESUMEN

A number of studies have reported comorbidity of food allergies with various neuropsychiatric disorders, such as anxiety, depression, attention-deficit hyperactivity disorder, and autism. However, inconsistent results across clinical studies have left the association between food allergy and behavioral disorders inconclusive. We postulated that the heterogeneities in genetic background among allergic cohorts affect symptom presentation and severity of food allergy, introducing bias in patient selection criteria toward individuals with overt physical reactions. To understand the influence of genetic background on food allergy symptoms and behavioral changes beyond anaphylaxis, we generated mouse models with mild cow's milk allergy by sensitizing male and female C57BL/6J and BALB/cJ mice to a bovine whey protein, ß-lactoglobulin (BLG; Bos d 5). We compared strain- and sex-dependent differences in their immediate physical reactions to BLG challenge as well as anxiety-like behavior one day after the challenge. While reactions to the allergen challenge were either absent or mild for all groups, a greater number of BLG-sensitized BALB/cJ mice presented visible symptoms and hypothermia compared to C57BL/6J mice. Interestingly, male mice of both strains displayed anxiety-like behavior on an elevated zero maze without exhibiting cognitive impairment with the cross maze test. Further characterization of plasma cytokines/chemokines and fecal microbiota also differentiated strain- and sex-dependent effects of BLG sensitization on immune-mediator levels and bacterial populations, respectively. These results demonstrated that the genetic variables in mouse models of milk allergy influenced immediate physical reactions to the allergen, manifestation of anxiety-like behavior, levels of immune responses, and population shift in gut microbiota. Thus, stratification of allergic cohorts by their symptom presentations and severity may strengthen the link between food allergy and behavioral disorders and identify a population(s) with specific genetic background that have increased susceptibility to allergy-associated behavioral disorders.


Asunto(s)
Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Hipersensibilidad a la Leche , Animales , Ansiedad , Bovinos , Femenino , Humanos , Inmunoglobulina E , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Methods Mol Biol ; 2223: 159-167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33226594

RESUMEN

Type-I hypersensitivity is commonly characterized by increased levels of antigen-specific immunoglobulin (Ig) E. Therefore, it is important for clinical and research investigators to reliably measure serum levels of IgE in allergic patients and animal models. While current ELISA-based methods are simple and commonly performed for the detection of allergen-specific IgE using serum or plasma, they may produce misleading results. This is in part due to decreased sensitivity for IgE in the presence of other Ig isotypes in the same sample, such as IgG, that are typically more abundant than IgE. When assessment of multiple Ig isotypes is necessary, performing optimized assays for individual isotypes requires high sample volumes. Here, we describe an approach to increase the sensitivity for IgE detection while conserving the sample volume needed. This method not only improves the accuracy of serum IgE measurements but also allows simultaneous analysis of other allergen-specific immunoglobulins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina E/sangre , Inmunoglobulina G/aislamiento & purificación , Separación Inmunomagnética , Hipersensibilidad a la Leche/sangre , Animales , Biotina/química , Peroxidasa de Rábano Silvestre/química , Inmunoglobulina G/sangre , Lactoglobulinas/administración & dosificación , Lactoglobulinas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Hipersensibilidad a la Leche/etiología , Hipersensibilidad a la Leche/inmunología , Unión Proteica , Estreptavidina/química
5.
Brain Res ; 1749: 147148, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33035498

RESUMEN

Central histaminergic H3 receptor (H3R) has been extensively investigated as a potential therapeutic target for various neurological and neurodegenerative disorders. Despite promising results in preclinical rodent models, clinical trials have not provided conclusive evidence for the benefit of H3R antagonists to alleviate cognitive and behavioral symptoms of these disorders. Inconsistent pharmacological efficacies may arise from aberrant changes in H3R over time during disease development. Because H3R is involved in feedback inhibition of histamine synthesis and secretion, the expression of the autoreceptor may also be reciprocally regulated by altered histamine levels in a pathological condition. Thus, we investigated H3R expression in a mouse model of cow's milk allergy, a condition associated with increased histamine levels. Mice were sensitized to bovine whey proteins (WP) over 5 weeks and H3R protein and transcript levels were examined in the brain. Substantially increased H3R immunoreactivity was observed in various brain regions of WP-sensitized mice compared to sham mice. Elevated H3R expression was also found in the thalamic/hypothalamic region. The expression of histaminergic H1, but not H2, receptor subtype was also increased in this and the midbrain regions. Unlike the brain, all three histaminergic receptors were increased in the small intestine. These results indicated that the central histaminergic receptors were altered in WP-sensitized mice in a subtype- and region-specific manner, which likely contributed to behavioral changes we observed in these mice. Our study also suggests that altered levels of H3R could be considered during a pharmacological intervention of a neurological disease.


Asunto(s)
Encéfalo/metabolismo , Histamina/metabolismo , Intestino Delgado/metabolismo , Hipersensibilidad a la Leche/metabolismo , Receptores Histamínicos H3/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Masculino , Ratones
6.
Front Cell Neurosci ; 13: 320, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379506

RESUMEN

Etiology of neuropsychiatric disorders is complex, involving multiple factors that can affect the type and severity of symptoms. Although precise causes are far from being identified, allergy or other forms of hypersensitivity to dietary ingredients have been implicated in triggering or worsening of behavioral and emotional symptoms, especially in patients suffering from depression, anxiety, attention-deficit hyperactivity, and/or autism. Among such ingredients, cow's milk, along with wheat gluten, is commonly suspected. However, the contributory role of cow's milk in these disorders has not been elucidated due to insufficient pathophysiological evidence. In the present study, we therefore investigated neuroinflammatory changes that are associated with behavioral abnormality using a non-anaphylactic mouse model of cow's milk allergy (CMA). Male and female C57BL/6J mice were subjected to a 5-week oral sensitization procedure without or with a major milk allergen, beta-lactoglobulin (BLG). All mice were then later challenged with BLG, and their anxiety- and depression-associated behaviors were subsequently assessed during the 6th and 7th weeks. We found that BLG-sensitized male mice exhibited significantly increased anxiety- and depression-like behavior, although they did not display anaphylactic reactions when challenged with BLG. Female behavior was not noticeably affected by BLG sensitization. Upon examination of the small intestines, reduced immunoreactivity to occludin was detected in the ileal mucosa of BLG-sensitized mice although the transcriptional expression of this tight-junction protein was not significantly altered when measured by quantitative RT-PCR. On the other hand, the expression of tumor necrosis factor alpha (TNFα) in the ileal mucosa was significantly elevated in BLG-sensitized mice, suggesting the sensitization had resulted in intestinal inflammation. Inflammatory responses were also detected in the brain of BLG-sensitized mice, determined by the hypertrophic morphology of GFAP-immunoreactive astrocytes. These reactive astrocytes were particularly evident near the blood vessels in the midbrain region, resembling the perivascular barrier previously reported by others in experimental autoimmune encephalitis (EAE) mouse models. Interestingly, increased levels of COX-2 and TNFα were also found in this region. Taken together, our results demonstrated that BLG sensitization elicits inflammatory responses in the intestine and brain without overt anaphylactic signs of milk allergy, signifying food allergy as a potential pathogenic factor of neuropsychiatric disorders.

7.
J Neuroinflammation ; 15(1): 120, 2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-29685134

RESUMEN

BACKGROUND: Growing evidence has strengthened the association of food allergy with neuropsychiatric symptoms such as depression, anxiety, and autism. However, underlying mechanisms by which peripheral allergic responses lead to behavioral dysfunction are yet to be determined. Allergen-activated mast cells may serve as mediators by releasing histamine and other inflammatory factors that could adversely affect brain function. We hypothesized that eliciting food allergy in experimental animals would result in behavioral changes accompanied by mast cell accumulation in the brain. Our hypothesis was tested in a mouse model of milk allergy using bovine milk whey proteins (WP) as the allergen. METHODS: Male and female C57BL/6 mice at 4 weeks (young) and 10 months (old) of age underwent 5-week WP sensitization with weekly intragastric administration of 20 mg WP and 10 µg cholera toxin as an adjuvant. Age-matched sham animals were given the vehicle containing only the adjuvant. All animals were orally challenged with 50 mg WP in week 6 and their intrinsic digging behavior was assessed the next day. Animals were sacrificed 3 days after the challenge, and WP-specific serum IgE, intestinal and brain mast cells, glial activation, and epigenetic DNA modification in the brain were examined. RESULTS: WP-sensitized males showed significantly less digging activity than the sham males in both age groups while no apparent difference was observed in females. Mast cells and their activities were evident in the intestines in an age- and sex-dependent manner. Brain mast cells were predominantly located in the region between the lateral midbrain and medial hippocampus, and their number increased in the WP-sensitized young, but not old, male brains. Noticeable differences in for 5-hydroxymethylcytosine immunoreactivity were observed in WP mice of both age groups in the amygdala, suggesting epigenetic regulation. Increased microglial Iba1 immunoreactivity and perivascular astrocytes hypertrophy were also observed in the WP-sensitized old male mice. CONCLUSIONS: Our results demonstrated that food allergy induced behavioral abnormality, increases in the number of mast cells, epigenetic DNA modification in the brain, microgliosis, and astrocyte hypertrophy in a sex- and age-dependent manner, providing a potential mechanism by which peripheral allergic responses evoke behavioral dysfunction.


Asunto(s)
Envejecimiento , Encefalitis/etiología , Hipersensibilidad a los Alimentos/complicaciones , Hipersensibilidad a los Alimentos/etiología , Mastocitos/patología , Trastornos Mentales/etiología , Proteína de Suero de Leche/toxicidad , Animales , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina E/metabolismo , Masculino , Mastocitos/fisiología , Ratones , Ratones Endogámicos C57BL , Ocludina/metabolismo , ARN Mensajero/metabolismo , Factores Sexuales , Triptasas/genética , Triptasas/metabolismo , Proteína de Suero de Leche/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...