Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(5): 118, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632121

RESUMEN

KEY MESSAGE: Modification of silent latent endosperm-enabled promoters (SLEEPERs) allows the ectopic activation of non-expressed metabolic genes in rice callus Metabolic engineering in plants typically involves transgene expression or the mutation of endogenous genes. An alternative is promoter modification, where small changes in the promoter sequence allow genes to be switched on or off in particular tissues. To activate silent genes in rice endosperm, we screened native promoters for near-miss cis-acting elements that can be converted to endosperm-active regulatory motifs. We chose rice PHYTOENE SYNTHASE 1 (PSY1), encoding the enzyme responsible for the first committed step in the carotenoid biosynthesis pathway, because it is not expressed in rice endosperm. We identified six motifs within a 120-bp region, upstream of the transcriptional start site, which differed from endosperm-active elements by up to four nucleotides. We mutated four motifs to match functional elements in the endosperm-active BCH2 promoter, and this promoter was able to drive GFP expression in callus and in seeds of regenerated plants. The 4 M promoter was not sufficient to drive PSY1 expression, so we mutated the remaining two elements and used the resulting 6 M promoter to drive PSY1 expression in combination with a PDS transgene. This resulted in deep orange callus tissue indicating the accumulation of carotenoids, which was subsequently confirmed by targeted metabolomics analysis. PSY1 expression driven by the uncorrected or 4 M variants of the promoter plus a PDS transgene produced callus that lacked carotenoids. These results confirm that the adjustment of promoter elements can facilitate the ectopic activation of endogenous plant promoters in rice callus and endosperm and most likely in other tissues and plant species.


Asunto(s)
Potencial Evento Adverso , Oryza , Humanos , Oryza/genética , Plantas Modificadas Genéticamente/genética , Carotenoides/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Phytochemistry ; 203: 113409, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36049525

RESUMEN

Vitamin A deficiency (VAD) in Low and Medium Income countries remains a major health concern. Ipomoea batatas, orange sweet potato (OSP), is one of the biofortification solutions being implemented by the World Health Organisation (WHO) to combat VAD. However, high provitamin A (ß-carotene) content has been associated with a reduction in dry matter, reducing calorific value and having adverse effects on consumer traits. Both starch and carotenoid formation are located in amyloplasts and could potentially compete for the same precursors. Hence, five different sweet potato storage root phenotypes were characterized through spatial metabolomics and proteomics at the sub-plastidal level. The metabolite data suggested an indirect correlation of starch and carotenoids through the TCA cycle and pentose phosphate pathway. Furthermore, a change in lipid composition was observed to accommodate the storage of carotenoids in the hydrophilic environment of the amyloplast. The data suggests an alteration of cellular ultra-structures and perturbation of metabolism in high ß-carotene producing sweet potato roots. This corroborates with previous gene expression analysis through biochemical analysis of sweet potato root tissue.


Asunto(s)
Ipomoea batatas , Carbono/metabolismo , Carotenoides/metabolismo , Ipomoea batatas/química , Lípidos , Fenotipo , Raíces de Plantas/química , Plastidios/metabolismo , Provitaminas/análisis , Almidón/metabolismo , beta Caroteno/análisis , beta Caroteno/metabolismo
3.
Sci Rep ; 4: 3859, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24457419

RESUMEN

Tomato and its processed products are one of the most widely consumed fruits. Its domestication, however, has resulted in the loss of some 95% of the genetic and chemical diversity of wild relatives. In order to elucidate this diversity, exploit its potential for plant breeding, as well as understand its biological significance, analytical approaches have been developed, alongside the production of genetic crosses of wild relatives with commercial varieties. In this article, we describe a multi-platform metabolomic analysis, using NMR, mass spectrometry and HPLC, of introgression lines of Solanum pennellii with a domesticated line in order to analyse and quantify alleles (QTL) responsible for metabolic traits. We have identified QTL for health-related antioxidant carotenoids and tocopherols, as well as molecular signatures for some 2000 compounds. Correlation analyses have revealed intricate interactions in isoprenoid formation in the plastid that can be extrapolated to other crop plants.


Asunto(s)
Frutas/genética , Metaboloma/genética , Solanum lycopersicum/genética , Solanum/genética , Biotecnología , Cruzamiento , Carotenoides/genética , Metabolómica , Sitios de Carácter Cuantitativo/genética , Terpenos , Tocoferoles
4.
J Exp Bot ; 63(16): 6035-43, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22987837

RESUMEN

The commercial cultivation of genetically engineered (GE) crops in Europe has met with considerable consumer resistance, which has led to vigorous safety assessments including the measurement of substantial equivalence between the GE and parent lines. This necessitates the identification and quantification of significant changes to the metabolome and proteome in the GE crop. In this study, the quantitative proteomic analysis of tomato fruit from lines that have been transformed with the carotenogenic gene phytoene synthase-1 (Psy-1), in the sense and antisense orientations, in comparison with a non-transformed, parental line is described. Multidimensional protein identification technology (MudPIT), with tandem mass spectrometry, has been used to identify proteins, while quantification has been carried out with isobaric tags for relative and absolute quantification (iTRAQ). Fruit from the GE plants showed significant alterations to their proteomes compared with the parental line, especially those from the Psy-1 sense transformants. These results demonstrate that MudPIT and iTRAQ are suitable techniques for the verification of substantial equivalence of the proteome in GE crops.


Asunto(s)
Transferasas Alquil y Aril/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Proteoma/metabolismo , Solanum lycopersicum/metabolismo , Transformación Genética , Transferasas Alquil y Aril/metabolismo , Frutas/genética , Frutas/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Proteoma/genética
5.
Plant Cell ; 22(4): 1190-215, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20435899

RESUMEN

Fruit-specific downregulation of the DE-ETIOLATED1 (DET1) gene product results in tomato fruits (Solanum lycopersicum) containing enhanced nutritional antioxidants, with no detrimental effects on yield. In an attempt to further our understanding of how modulation of this gene leads to improved quality traits, detailed targeted and multilevel omic characterization has been performed. Metabolite profiling revealed quantitative increases in carotenoid, tocopherol, phenylpropanoids, flavonoids, and anthocyanidins. Qualitative differences could also be identified within the phenolics, including unique formation in fruit pericarp tissues. These changes resulted in increased total antioxidant content both in the polar and nonpolar fractions. Increased transcription of key biosynthetic genes is a likely mechanism producing elevated phenolic-based metabolites. By contrast, high levels of isoprenoids do not appear to result from transcriptional regulation but are more likely related to plastid-based parameters, such as increased plastid volume per cell. Parallel metabolomic and transcriptomic analyses reveal the widespread effects of DET1 downregulation on diverse sectors of metabolism and sites of synthesis. Correlation analysis of transcripts and metabolites independently indicated strong coresponses within and between related pathways/processes. Interestingly, despite the fact that secondary metabolites were the most severely affected in ripe tomato fruit, our integrative analyses suggest that the coordinated activation of core metabolic processes in cell types amenable to plastid biogenesis is the main effect of DET1 loss of function.


Asunto(s)
Frutas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Antioxidantes/análisis , Carotenoides/análisis , Regulación hacia Abajo , Flavonoides/análisis , Frutas/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Metaboloma , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteínas de Plantas/genética , ARN de Planta/genética
6.
Plant Cell ; 19(10): 3194-211, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17933904

RESUMEN

In tomato (Solanum lycopersicum), phytoene synthase-1 (PSY-1) is the key biosynthetic enzyme responsible for the synthesis of fruit carotenoids. To further our understanding of carotenoid formation in tomato fruit, we characterized the effect of constitutive expression of an additional tomato Psy-1 gene product. A quantitative data set defining levels of carotenoid/isoprenoid gene expression, enzyme activities, and metabolites was generated from fruit that showed the greatest perturbation in carotenoid content. Transcriptional upregulation, resulting in increased enzyme activities and metabolites, occurred only in the case of Psy-1, Psy-2, and lycopene cyclase B. For reactions involving 1-deoxy-d-xylulose5-phosphate synthase, geranylgeranyl diphosphate synthase, phytoene desaturase, zeta-carotene desaturase, carotene isomerase, and lycopene beta-cyclase, there were no correlations between gene expression, enzyme activities, and metabolites. Perturbations in carotenoid composition were associated with changes in plastid type and with chromoplast-like structures arising prematurely during fruit development. The levels of >120 known metabolites were determined. Comparison with the wild type illustrated that key metabolites (sucrose, glucose/fructose, and Glu) and sectors of intermediary metabolism (e.g., tricarboxylic [corrected] acid cycle intermediates and fatty acids) in the Psy-1 transgenic mature green fruit resembled changes in metabolism associated with fruit ripening. General fruit developmental and ripening properties, such as ethylene production and fruit firmness, were unaffected. Therefore, it appears that the changes to pigmentation, plastid type, and metabolism associated with Psy-1 overexpression are not connected with the ripening process.


Asunto(s)
Carotenoides/metabolismo , Frutas/metabolismo , Plastidios/metabolismo , Solanum lycopersicum/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Germinación/genética , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plastidios/genética , Reacción en Cadena de la Polimerasa , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , beta Caroteno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...