Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Risk Anal ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772724

RESUMEN

The coronavirus disease 2019 pandemic highlighted the need for more rapid and routine application of modeling approaches such as quantitative microbial risk assessment (QMRA) for protecting public health. QMRA is a transdisciplinary science dedicated to understanding, predicting, and mitigating infectious disease risks. To better equip QMRA researchers to inform policy and public health management, an Advances in Research for QMRA workshop was held to synthesize a path forward for QMRA research. We summarize insights from 41 QMRA researchers and experts to clarify the role of QMRA in risk analysis by (1) identifying key research needs, (2) highlighting emerging applications of QMRA; and (3) describing data needs and key scientific efforts to improve the science of QMRA. Key identified research priorities included using molecular tools in QMRA, advancing dose-response methodology, addressing needed exposure assessments, harmonizing environmental monitoring for QMRA, unifying a divide between disease transmission and QMRA models, calibrating and/or validating QMRA models, modeling co-exposures and mixtures, and standardizing practices for incorporating variability and uncertainty throughout the source-to-outcome continuum. Cross-cutting needs identified were to: develop a community of research and practice, integrate QMRA with other scientific approaches, increase QMRA translation and impacts, build communication strategies, and encourage sustainable funding mechanisms. Ultimately, a vision for advancing the science of QMRA is outlined for informing national to global health assessments, controls, and policies.

2.
Sci Total Environ ; : 173361, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777060

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) enter surface waters from various sources such as wastewater treatment plants, fire-fighting sites, and PFAS-producing and PFAS-using industries. The Las Vegas Wash in Southern Nevada of the United States (U.S.) conveys wastewater effluent from the Las Vegas metropolitan area to Lake Mead, a drinking water source for millions of people in the U.S. Southwest. PFAS have previously been detected in the Las Vegas Wash, but PFAS sources were not identified. In this study, upstream wash tributaries, wastewater treatment effluents, and shallow groundwater wells were sampled in multiple campaigns during dry-weather conditions to investigate possible PFAS sources. Out of 19 PFAS, two short-chain PFAS-perfluoropentanoic acid (48 % of the total molar concentration) and perfluorohexanoic acid (32 %)-comprised the majority of PFAS loading measured in the Las Vegas Wash, followed by perfluorooctanoic acid (9 %). On a mass loading basis, the majority of total measured PFAS (approximately 90 %) and at least 48 % of each specific PFAS in the Las Vegas Wash likely entered via municipal wastewater effluents, of which the main source was likely residential wastewater. One of the drainage areas with a major civilian airport was identified as a potential source of relatively enriched perfluorosulfonic acids to a small wash tributary and shallow groundwater samples. Nonetheless, that tributary contributed at most 15 % of any specific PFAS to the mainstem of the Las Vegas Wash. Total PFAS concentrations were relatively low for the small tributary associated with an urban smaller airport and the lack of flow in the tributary channel immediately downgradient of an Air Force Base indicates the smaller airport and base were unlikely significant PFAS sources to the Las Vegas Wash. Overall, this study demonstrated effective PFAS source investigation methodology and the importance of wastewater effluent as a PFAS environmental pathway.

3.
medRxiv ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38699326

RESUMEN

Genome sequencing from wastewater has emerged as an accurate and cost-effective tool for identifying SARS-CoV-2 variants. However, existing methods for analyzing wastewater sequencing data are not designed to detect novel variants that have not been characterized in humans. Here, we present an unsupervised learning approach that clusters co-varying and time-evolving mutation patterns leading to the identification of SARS-CoV-2 variants. To build our model, we sequenced 3,659 wastewater samples collected over a span of more than two years from urban and rural locations in Southern Nevada. We then developed a multivariate independent component analysis (ICA)-based pipeline to transform mutation frequencies into independent sources with co-varying and time-evolving patterns and compared variant predictions to >5,000 SARS-CoV-2 clinical genomes isolated from Nevadans. Using the source patterns as data-driven reference "barcodes", we demonstrated the model's accuracy by successfully detecting the Delta variant in late 2021, Omicron variants in 2022, and emerging recombinant XBB variants in 2023. Our approach revealed the spatial and temporal dynamics of variants in both urban and rural regions; achieved earlier detection of most variants compared to other computational tools; and uncovered unique co-varying mutation patterns not associated with any known variant. The multivariate nature of our pipeline boosts statistical power and can support accurate and early detection of SARS-CoV-2 variants. This feature offers a unique opportunity for novel variant and pathogen detection, even in the absence of clinical testing.

4.
Environ Sci Technol Lett ; 11(5): 410-417, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38752195

RESUMEN

In the United States, the growing number of people experiencing homelessness has become a socioeconomic crisis with public health ramifications, recently exacerbated by the COVID-19 pandemic. We hypothesized that the environmental surveillance of flood control infrastructure may be an effective approach to understand the prevalence of infectious disease. From December 2021 through July 2022, we tested for SARS-CoV-2 RNA from two flood control channels known to be impacted by unsheltered individuals residing in upstream tunnels. Using qPCR, we detected SARS-CoV-2 RNA in these environmental water samples when significant COVID-19 outbreaks were occurring in the surrounding community. We also performed whole genome sequencing to identify SARS-CoV-2 lineages. Variant compositions were consistent with those of geographically and temporally matched municipal wastewater samples and clinical specimens. However, we also detected 10 of 22 mutations specific to the Alpha variant in the environmental water samples collected during January 2022-one year after the Alpha infection peak. We also identified mutations in the spike gene that have never been identified in published reports. Our findings demonstrate that environmental surveillance of flood control infrastructure may be an effective tool to understand public health conditions among unsheltered individuals-a vulnerable population that is underrepresented in clinical surveillance data.

5.
Environ Sci Technol ; 58(15): 6540-6551, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574283

RESUMEN

Water age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of Legionella pneumophila via a growth model. In turn, the L. pneumophila concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection (Pinf) and clinically severe illness (Pcsi) due to showering. Risk reductions achieved by purging devices, which reduce water age, were also quantified. The median annual Pinf exceeded the commonly used 1 in 10,000 (10-4) risk benchmark in all scenarios, but the median annual Pcsi was always 1-3 orders of magnitude below 10-4. The median annual Pcsi was lower in homes with two occupants (4.7 × 10-7) than with one occupant (7.5 × 10-7) due to more frequent use of water fixtures, which reduced water ages. The median annual Pcsi for homes with one occupant was reduced by 39-43% with scheduled purging 1-2 times per day. Smart purging devices, which purge only after a certain period of nonuse, maintained these lower annual Pcsi values while reducing additional water consumption by 45-62%.


Asunto(s)
Agua Potable , Legionella pneumophila , Legionella , Abastecimiento de Agua , Microbiología del Agua , Ingeniería Sanitaria , Medición de Riesgo
6.
medRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352613

RESUMEN

Evaluating drug use within populations in the United States poses significant challenges due to various social, ethical, and legal constraints, often impeding the collection of accurate and timely data. Here, we aimed to overcome these barriers by conducting a comprehensive analysis of drug consumption trends and measuring their association with socioeconomic and demographic factors. From May 2022 to April 2023, we analyzed 208 wastewater samples from eight sampling locations across six wastewater treatment plants in Southern Nevada, covering a population of 2.4 million residents with 50 million annual tourists. Using bi-weekly influent wastewater samples, we employed mass spectrometry to detect 39 analytes, including pharmaceuticals and personal care products (PPCPs) and high risk substances (HRS). Our results revealed a significant increase over time in the level of stimulants such as cocaine (pFDR=1.40×10-10) and opioids, particularly norfentanyl (pFDR =1.66×10-12), while PPCPs exhibited seasonal variation such as peak usage of DEET, an active ingredient in insect repellents, during the summer (pFDR =0.05). Wastewater from socioeconomically disadvantaged or rural areas, as determined by Area Deprivation Index (ADI) and Rural-Urban Commuting Area Codes (RUCA) scores, demonstrated distinct overall usage patterns, such as higher usage/concentration of HRS, including cocaine (p=0.05) and norfentanyl (p=1.64×10-5). Our approach offers a near real-time, comprehensive tool to assess drug consumption and personal care product usage at a community level, linking wastewater patterns to socioeconomic and demographic factors. This approach has the potential to significantly enhance public health monitoring strategies in the United States.

9.
Sci Total Environ ; 872: 162058, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758698

RESUMEN

Real-time surveillance of infectious diseases at schools or in communities is often hampered by delays in reporting due to resource limitations and infrastructure issues. By incorporating quantitative PCR and genome sequencing, wastewater surveillance has been an effective complement to public health surveillance at the community and building-scale for pathogens such as poliovirus, SARS-CoV-2, and even the monkeypox virus. In this study, we asked whether wastewater surveillance programs at elementary schools could be leveraged to detect RNA from influenza viruses shed in wastewater. We monitored for influenza A and B viral RNA in wastewater from six elementary schools from January to May 2022. Quantitative PCR led to the identification of influenza A viral RNA at three schools, which coincided with the lifting of COVID-19 restrictions and a surge in influenza A infections in Las Vegas, Nevada, USA. We performed genome sequencing of wastewater RNA, leading to the identification of a 2021-2022 vaccine-resistant influenza A (H3N2) 3C.2a1b.2a.2 subclade. We next tested wastewater samples from a treatment plant that serviced the elementary schools, but we were unable to detect the presence of influenza A/B RNA. Together, our results demonstrate the utility of near-source wastewater surveillance for the detection of local influenza transmission in schools, which has the potential to be investigated further with paired school-level influenza incidence data.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/genética , Aguas Residuales , Subtipo H3N2 del Virus de la Influenza A/genética , Nevada/epidemiología , COVID-19/epidemiología , SARS-CoV-2/genética , Monitoreo Epidemiológico Basado en Aguas Residuales , Vacunas contra la Influenza/genética , ARN Viral , Instituciones Académicas
10.
JAMA Netw Open ; 6(2): e230550, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821109

RESUMEN

Importance: Interpretation of wastewater surveillance data is potentially confounded in communities with mobile populations, so it is important to account for this issue when conducting wastewater-based epidemiology (WBE). Objectives: To leverage spatial and temporal differences in wastewater whole-genome sequencing (WGS) data to quantify relative SARS-CoV-2 contributions from visitors to southern Nevada. Design, Setting, and Participants: This cross-sectional wastewater surveillance study was performed during the COVID-19 pandemic (March 2020 to February 2022) and included weekly influent wastewater samples that were analyzed by reverse transcription-quantitative polymerase chain reaction to quantify SARS-CoV-2 RNA and WGS for identification of variants of concern. This study was conducted in the Las Vegas, Nevada, metropolitan area, which is a semi-urban area with approximately 2.3 million residents and nearly 1 million weekly visitors. Samples were collected from 7 wastewater treatment plant (WWTP) locations that collectively serve the vast majority of southern Nevada (excluding the small number of septic systems) and 1 manhole serving the southern portion of the Las Vegas Strip. With Las Vegas tourism returning to prepandemic levels in 2021, it was hypothesized that visitors were contributing a disproportionate fraction of SARS-CoV-2 RNA to the largest WWTP in southern Nevada, potentially confounding efforts to estimate COVID-19 incidence in the local community through WBE. Main Outcomes and Measures: Relative SARS-CoV-2 load and variants from visitors vs the local population. Results: The Omicron BA.1 VOC was detected in the Las Vegas Strip manhole approximately 1 week before its detection at the WWTP locations (December 13, 2021) and by clinical testing (December 14, 2021). On December 13, Omicron-specific mutations represented a mean (SD) of 48.0% (4.2%) of all genomes from the Las Vegas Strip manhole and 4.1% (1.4%) of all genomes at facilities 2 and 3; by December 20, Omicron-specific mutations represented means (SD) of 82.0% (3.0%) of all genomes at the Las Vegas Strip manhole and 48.0% (2.8%) of all genomes at facilities 2 and 3, respectively. During this time, it was estimated that visitors contributed more than 60% of the SARS-CoV-2 load to the sewershed serving the Las Vegas Strip and that Omicron prevalence among visitors was 40% to 60% on December 13 and 80% to 100% on December 20th. Conclusions and Relevance: Wastewater surveillance is a valuable complement to clinical tools and can provide time-sensitive data for decision-makers and policy makers. This study represents a novel approach for quantifying the confounding effects of mobile populations on wastewater surveillance data, thereby allowing for modification of an existing WBE framework for estimating COVID-19 incidence in southern Nevada.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Aguas Residuales , Estudios Transversales , Pandemias , ARN Viral , Monitoreo Epidemiológico Basado en Aguas Residuales
11.
Emerg Infect Dis ; 29(2): 422-425, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36692459

RESUMEN

Candida auris transmission is steadily increasing across the United States. We report culture-based detection of C. auris in wastewater and the epidemiologic link between isolated strains and southern Nevada, USA, hospitals within the sampled sewershed. Our results illustrate the potential of wastewater surveillance for containing C. auris.


Asunto(s)
Candida , Candidiasis , Humanos , Estados Unidos/epidemiología , Candidiasis/tratamiento farmacológico , Candida auris , Aguas Residuales , Nevada/epidemiología , Monitoreo Epidemiológico Basado en Aguas Residuales , Brotes de Enfermedades , Antifúngicos/uso terapéutico
12.
Environ Sci Technol ; 57(4): 1755-1763, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36656763

RESUMEN

Candida auris is an opportunistic fungal pathogen and an emerging global public health threat, given its high mortality among infected individuals, antifungal resistance, and persistence in healthcare environments. This study explored the applicability of wastewater surveillance for C. auris in a metropolitan area with reported outbreaks across multiple healthcare facilities. Influent or primary effluent samples were collected over 10 weeks from seven sewersheds in Southern Nevada. Pelleted solids were analyzed using an adapted quantitative polymerase chain reaction (qPCR) assay targeting the ITS2 region of the C. auris genome. Positive detection was observed in 72 of 91 samples (79%), with higher detection frequencies in sewersheds serving healthcare facilities involved in the outbreak (94 vs 20% sample positivity). Influent wastewater concentrations ranged from 2.8 to 5.7 log10 gene copies per liter (gc/L), and primary clarification achieved an average log reduction value (LRV) of 1.24 ± 0.34. Presumptive negative surface water and wastewater controls were non-detect. These results demonstrate that wastewater surveillance may assist in tracking the spread of C. auris and serve as an early warning tool for public health action. These findings provide the foundation for future application of wastewater-based epidemiology (WBE) to community- or facility-level surveillance of C. auris and other high consequence, healthcare-associated infectious agents.


Asunto(s)
Candida , Candidiasis , Humanos , Candida/genética , Candidiasis/diagnóstico , Candidiasis/epidemiología , Candidiasis/microbiología , Candida auris , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Nevada/epidemiología , Brotes de Enfermedades
13.
Sci Total Environ ; 858(Pt 3): 160024, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356728

RESUMEN

The identification of novel SARS-CoV-2 variants can predict new patterns of COVID-19 community transmission and lead to the deployment of public health resources. However, increased access to at-home antigen tests and reduced free PCR tests have recently led to data gaps for the surveillance of evolving SARS-CoV-2 variants. To overcome such limitations, we asked whether wastewater surveillance could be leveraged to detect rare variants circulating in a community before local detection in human cases. Here, we performed whole genome sequencing (WGS) of SARS-CoV-2 from a wastewater treatment plant serving Las Vegas, Nevada in April 2022. Using metrics that exceeded 100× depth at a coverage of >90 % of the viral genome, we identified a variant profile similar to the XL recombinant lineage containing 26 mutations found in BA.1 and BA.2 and three private mutations. Prompted by the discovery of this rare lineage in wastewater, we analyzed clinical COVID-19 sequencing data from Southern Nevada and identified two cases infected with the XL lineage. Taken together, our data highlight how wastewater genome sequencing data can be used to discover rare SARS-CoV-2 lineages in a community and complement local public health surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
14.
Sci Total Environ ; 853: 158577, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36087661

RESUMEN

During the early phase of the COVID-19 pandemic, infected patients presented with symptoms similar to bacterial pneumonias and were treated with antibiotics before confirmation of a bacterial or fungal co-infection. We reasoned that wastewater surveillance could reveal potential relationships between reduced antimicrobial stewardship, specifically misprescribing antibiotics to treat viral infections, and the occurrence of antimicrobial resistance (AMR) in an urban community. Here, we analyzed microbial communities and AMR profiles in sewage samples from a wastewater treatment plant (WWTP) and a community shelter in Las Vegas, Nevada during a COVID-19 surge in December 2020. Using a respiratory pathogen and AMR enrichment next-generation sequencing panel, we identified four major phyla in the wastewater, including Actinobacteria, Firmicutes, Bacteroidetes and Proteobacteria. Consistent with antibiotics that were reportedly used to treat COVID-19 infections (e.g., fluoroquinolones and beta-lactams), we also measured a significant spike in corresponding AMR genes in the wastewater samples. AMR genes associated with colistin resistance (mcr genes) were also identified exclusively at the WWTP, suggesting that multidrug resistant bacterial infections were being treated during this time. We next compared the Las Vegas sewage data to local 2018-2019 antibiograms, which are antimicrobial susceptibility profile reports about common clinical pathogens. Similar to the discovery of higher levels of beta-lactamase resistance genes in sewage during 2020, beta-lactam antibiotics accounted for 51 ± 3 % of reported antibiotics used in antimicrobial susceptibility tests of 2018-2019 clinical isolates. Our data highlight how wastewater-based epidemiology (WBE) can be leveraged to complement more traditional surveillance efforts by providing community-level data to help identify current and emerging AMR threats.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , Aguas Residuales/microbiología , Antibacterianos/farmacología , Aguas del Alcantarillado/microbiología , COVID-19/epidemiología , Monitoreo Epidemiológico Basado en Aguas Residuales , Colistina , Pandemias , Farmacorresistencia Bacteriana/genética , beta-Lactamas , Fluoroquinolonas , Bacterias
15.
Sci Total Environ ; 840: 156714, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35709998

RESUMEN

Unsheltered homelessness is rapidly becoming a critical issue in many cities worldwide. The worsening situation not only highlights the socioeconomic plight, but it also raises awareness of ancillary issues such as the potential implications for urban water quality. The objective of this study was to simultaneously leverage diverse source tracking tools to develop a chemical and microbial fingerprint describing the relative contribution of direct human inputs into Las Vegas' tributary washes. By evaluating a wide range of urban water matrices using general water quality parameters, fecal indicator bacteria (FIB), human-associated microbial markers [e.g., HF183, crAssphage, and pepper mild mottle virus (PMMoV)], 16S rRNA gene sequencing data, and concentrations of 52 anthropogenic trace organic compounds (TOrCs), this study was able to differentiate principal sources of these constituents, including contributions from unsheltered homelessness. For example, HF183 (31% vs. 0%), crAssphage (61% vs. 5%), and PMMoV (72% vs. 55%) were more frequently detected in tributary washes with higher homeless census counts vs. 'control' tributary washes. Illicit drugs or their metabolites (e.g., heroin, acetylmorphine, amphetamine, and cocaine) and select TOrCs (e.g., acetaminophen, caffeine, ibuprofen, and naproxen) were also detected more frequently and at higher concentrations in the more anthropogenically-impacted washes. These data can be used to raise awareness of the shared interests between the broader community and those who are experiencing homelessness, notably the importance of protecting environmental health and water quality. Ultimately, this may lead to more rapid adoption of proven strategies for achieving functional zero homelessness, or at least additional resources for unsheltered individuals.


Asunto(s)
Personas con Mala Vivienda , Contaminación del Agua , Monitoreo del Ambiente , Heces/microbiología , Humanos , ARN Ribosómico 16S , Tobamovirus , Microbiología del Agua , Contaminación del Agua/análisis
16.
Water Res ; 220: 118615, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35617788

RESUMEN

Legionella occurrence monitoring is not required by United States Environmental Protection Agency (USEPA) drinking water regulations, and few occurrence studies exist for Legionella in source water or distribution systems. Legionella occurrence was monitored in Las Vegas Valley (Las Vegas, Nevada, USA) drinking water sources, including non-treated surface water, seasonal groundwater (61 wells, before and after chlorination), finished water (after treatment at water treatment facilities), and chlorinated distribution system water (at 9 reservoirs and 75 sample locations throughout the network). Legionella pneumophila was detected at least once at each of the wells sampled before chlorination, with an overall positivity rate of 38% (343/908). During well start-up (time<2 hours; turbidity>3 NTU), L. pneumophila concentrations averaged 2,792±353 MPN/100 mL, with a median of 105 MPN/100 mL, and range of <1 to 90,490 MPN/100 mL across 61 seasonally operated (typically April-October) groundwater wells. After initial flushing (turbidity<3 NTU), the average concentration decreased by more than two orders of magnitude to 24±3 MPN/100 mL but ranged from <1 to >2,273 MPN/100 mL. This trend indicates that stagnation (up to 391 days) contributed to greater initial concentrations, and flushing alone was incapable of complete L. pneumophila elimination. L. pneumophila concentration was significantly, positively correlated with total aqueous adenosine triphosphate (ATP) (p<0.00001, r=0.41-0.71), turbidity (p<0.00001, r=0.27-0.51), orthophosphate (p=0.35-0.076, r=0.51-0.59), and pump depth (p=0.032, r=0.40). During a full-scale assessment of chlorination (Ct=0.7 to 10.5 mg-min/L; T=26.6-28.1°C), substantial reduction of Legionella spp. (up to 2.5 logs) was observed; although, detectable concentrations were still measured. Extrapolating from a Chick-Watson model (log inactivation=0.28*(Ct); R2=0.87) constructed from the full-scale chlorination results, 3- and 4-log inactivation in Las Vegas Valley groundwater would require 10.8 and 14.3 mg-min/L, respectively; at least 3-log inactivation was required to bring Legionella spp. to below detection at the studied well. Chlorine exposure (Ct=0.1 to 10.9 mg-min/L) at most wells discharging directly to the distribution system was insufficient to fully inactivate Legionella spp. After discussing these findings with the state regulatory agency, direct-to-distribution wells (38 of 61 wells) remained out of operation; the distribution system, wells, and reservoirs were monitored for Legionella and chlorine residual, and additional treatment scenarios were identified for further evaluation. Legionella was either not detected or was well controlled in surface water, finished effluent from the drinking water treatment plant, chlorinated reservoirs, and the chlorinated distribution system. This study emphasizes the importance of utility-driven, non-regulatory research in order to protect public health and also identifies the need for greater occurrence monitoring and guidance for Legionella in groundwater supplies.


Asunto(s)
Agua Potable , Agua Subterránea , Legionella pneumophila , Legionella , Cloro , Microbiología del Agua , Abastecimiento de Agua
17.
Sci Total Environ ; 835: 155410, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35469875

RESUMEN

A decline in diagnostic testing for SARS-CoV-2 is expected to delay the tracking of COVID-19 variants of concern and interest in the United States. We hypothesize that wastewater surveillance programs provide an effective alternative for detecting emerging variants and assessing COVID-19 incidence, particularly when clinical surveillance is limited. Here, we analyzed SARS-CoV-2 RNA in wastewater from eight locations across Southern Nevada between March 2020 and April 2021. Trends in SARS-CoV-2 RNA concentrations (ranging from 4.3 log10 gc/L to 8.7 log10 gc/L) matched trends in confirmed COVID-19 incidence, but wastewater surveillance also highlighted several limitations with the clinical data. Amplicon-based whole genome sequencing (WGS) of 86 wastewater samples identified the B.1.1.7 (Alpha) and B.1.429 (Epsilon) lineages in December 2020, but clinical sequencing failed to identify the variants until January 2021, thereby demonstrating that 'pooled' wastewater samples can sometimes expedite variant detection. Also, by calibrating fecal shedding (11.4 log10 gc/infection) and wastewater surveillance data to reported seroprevalence, we estimate that ~38% of individuals in Southern Nevada had been infected by SARS-CoV-2 as of April 2021, which is significantly higher than the 10% of individuals confirmed through clinical testing. Sewershed-specific ascertainment ratios (i.e., X-fold infection undercounts) ranged from 1.0 to 7.7, potentially due to demographic differences. Our data underscore the growing application of wastewater surveillance in not only the identification and quantification of infectious agents, but also the detection of variants of concern that may be missed when diagnostic testing is limited or unavailable.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , ARN Viral , SARS-CoV-2/genética , Estudios Seroepidemiológicos , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
18.
Water Res ; 214: 118206, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35276607

RESUMEN

Viruses, Giardia cysts, and Cryptosporidium parvum oocysts are all major causes of waterborne diseases that can be uniquely challenging in terms of inactivation/removal during water and wastewater treatment and water reuse. Ozone is a strong disinfectant that has been both studied and utilized in water treatment for more than a century. Despite the wealth of data examining ozone disinfection, direct comparison of results from different studies is challenging due to the complexity of aqueous ozone chemistry and the variety of the applied approaches. In this systematic review, an analysis of the available ozone disinfection data for viruses, Giardia cysts, and C. parvum oocysts, along with their corresponding surrogates, was performed. It was based on studies implementing procedures which produce reliable and comparable datasets. Datasets were compiled and compared with the current USEPA Ct models for ozone. Additionally, the use of non-pathogenic surrogate organisms for prediction of pathogen inactivation during ozone disinfection was evaluated. Based on second-order inactivation rate constants, it was determined that the inactivation efficiency of ozone decreases in the following order: Viruses >> Giardia cysts > C. parvum oocysts. The USEPA Ct models were found to be accurate to conservative in predicting inactivation of C. parvum oocysts and viruses, respectively, however they overestimate inactivation of Giardia cysts at ozone Ct values greater than ∼1 mg min L-1. Common surrogates of these pathogens, such as MS2 bacteriophage and Bacillus subtilis spores, were found to exhibit different inactivation kinetics to mammalian viruses and C. parvum oocysts, respectively. The compilation of data highlights the need for further studies on disinfection kinetics and inactivation mechanisms by ozone to better fit inactivation models as well as for proper selection of surrogate organisms.

19.
Sci Total Environ ; 817: 152958, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016937

RESUMEN

In this study, wastewater-based surveillance was carried out to establish the correlation between SARS-CoV-2 viral RNA concentrations in wastewater and the incidence of corona virus disease 2019 (COVID-19) from clinical testing. The influent wastewater of three major water reclamation facilities (WRFs) in Northern Nevada, serving a population of 390,750, was monitored for SARS-CoV-2 viral RNA gene markers, N1 and N2, from June 2020 through September 2021. A total of 614 samples were collected and analyzed. The SARS-CoV-2 concentrations in wastewater were observed to peak twice during the study period. A moderate correlation trend between coronavirus disease 2019 (COVID-19) incidence data from clinical testing and SARS-CoV-2 viral RNA concentrations in wastewater was observed (Spearman r = 0.533). This correlation improved when using weekly average SARS-CoV-2 marker concentrations of wastewater and clinical case data (Spearman r = 0.790), presumably by mitigating the inherent variability of the environmental dataset and the effects of clinical testing artifacts (e.g., reporting lags). The research also demonstrated the value of wastewater-based surveillance as an early warning signal for early detection of trends in COVID-19 incidence. This was accomplished by identifying that the reported clinical cases had a stronger correlation to SARS-CoV-2 wastewater monitoring data when they were estimated to lag 7-days behind the wastewater data. The results aided local decision makers in developing strategies to manage COVID-19 in the region and provide a framework for how wastewater-based surveillance can be applied across localities to enhance the public health monitoring of the ongoing pandemic.


Asunto(s)
COVID-19 , Aguas Residuales , COVID-19/epidemiología , Marcadores Genéticos , Humanos , ARN Viral , SARS-CoV-2/genética
20.
ACS ES T Water ; 2(11): 1863-1870, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566355

RESUMEN

This study describes wastewater concentrations of SARS-CoV-2 at seven different sampling locations in Southern Nevada (ranging from 4.2 to 8.7 log10 gc/L) and highlights several key variables affecting those concentrations, including COVID-19 incidence, sample type, and service area population. This information is important for implementing wastewater-based epidemiology, but it also provides insight relevant to the design and regulation of potable reuse systems. Specifically, smaller systems may be more prone to influent concentration spikes that can drive enteric pathogen risk during disease outbreaks. It may be possible to leverage reactor hydraulics to achieve peak "averaging" in these scenarios, although it then becomes important to consider how elevated risks at the lower percentiles potentially offset benefits at the upper percentiles. Informed by SARS-CoV-2 concentration dynamics, the current study simulated relative risk for a hypothetical enteric pathogen. Simulated reactor hydraulics (i.e., dispersion) increased pathogen concentrations by up to 2.6 logs at lower percentiles but also decreased concentrations by up to 1.1 logs at the upper percentiles that sometimes drive public health risk. Collectively, these data highlight the importance of considering outbreak conditions, pathogen spikes, and peak "averaging" in the design and operation of treatment systems and in the development of regulatory frameworks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...