Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
HGG Adv ; 4(3): 100189, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37124137

RESUMEN

Quantitative and qualitative spermatogenic impairments are major causes of men's infertility. Although in vitro fertilization (IVF) is effective, some couples persistently fail to conceive. To identify causal variants in patients with severe male infertility factor and repeated IVF failures, we sequenced the exome of two consanguineous family members who underwent several failed IVF cycles and were diagnosed with low sperm count and motility. We identified a rare homozygous nonsense mutation in a previously uncharacterized gene, RNF212B, as the causative variant. Recurrence was identified in another unrelated, infertile patient who also faced repeated failed IVF treatments. scRNA-seq demonstrated meiosis-specific expression of RNF212B. Sequence analysis located a protein domain known to be associated with aneuploidy, which can explain multiple IVF failures. Accordingly, FISH analysis revealed a high aneuploidy rate in the patients' sperm cells and their IVF embryos. Finally, inactivation of the Drosophila orthologs significantly reduced male fertility. Given that members of the evolutionary conserved RNF212 gene family are involved in meiotic recombination and crossover maturation, our findings indicate a critical role of RNF212B in meiosis, genome stability, and in human fertility. Since recombination is completely absent in Drosophila males, our findings may indicate an additional unrelated role for the RNF212-like paralogs in spermatogenesis.


Asunto(s)
Infertilidad Masculina , Ligasas , Semen , Humanos , Masculino , Aneuploidia , Fertilización In Vitro , Infertilidad Masculina/genética , Ligasas/genética , Espermatozoides , Dominios RING Finger
2.
Genes (Basel) ; 14(3)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36980820

RESUMEN

In dairy cattle, identifying polymorphisms that contribute to complex economical traits such as residual feed intake (RFI) is challenging and demands accurate genotyping. In this study, we compared imputed genotypes (n = 192 cows) to those obtained using the TaqMan and high-resolution melting (HRM) methods (n = 114 cows), for mutations in the FABP4 gene that had been suggested to have a large effect on RFI. Combining the whole genome sequence (n = 19 bulls) and the cows' BovineHD BeadChip allowed imputing genotypes for these mutations that were verified by Sanger sequencing, whereas, an error rate of 11.6% and 10.7% were encountered for HRM and TaqMan, respectively. We show that this error rate seriously affected the linkage-disequilibrium analysis that supported this gene candidacy over other BTA14 gene candidates. Thus, imputation produced superior genotypes and should also be regarded as a method of choice to validate the reliability of the genotypes obtained by other methodologies that are prone to genotyping errors due to technical conditions. These results support the view that RFI is a complex trait and that searching for the causative sequence variation underlying cattle RFI should await the development of statistical methods suitable to handle additive and epistatic interactions.


Asunto(s)
Genoma , Femenino , Bovinos/genética , Animales , Masculino , Genotipo , Reproducibilidad de los Resultados , Desequilibrio de Ligamiento
3.
Genes (Basel) ; 14(3)2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36980860

RESUMEN

"Livability" was defined as the inverse of the probability of death. The objectives of this study were to estimate the heritability, genetic and phenotypic trends for the livability of Israeli Holstein cows; estimate the genetic and environmental correlations between livability and the nine traits included in the Israeli breeding index; estimate the effect of the inclusion of livability in the Israeli breeding index on expected genetic gains; and compute a genome-wide association study (GWAS) for livability. Seven data sets were analyzed. All data were derived from the database of the Israeli dairy cattle herd-book. The mean livability for the complete data set of 523,954 cows born from 2000 through 2016 was 89.6%. Pregnancy reduced livability by 15%. Livability generally increased with parity and days in milk within parity. Heritability of livability was 0.0082. Phenotypic and genetic trends over the 14-year period from 2000 through 2013 were -0.42% and -0.22% per year. If livability is included in the Israeli breeding index, accounting for 9% of the index, livability would increase by 1.3% and protein production would decrease by 11 kg over the next decade, as compared to the current index. A marker in proximity to the oxytocin-vasopressin locus had the greatest effect in the GWAS. Oxytocin activity in cattle affects calving-associated pathologies and maternal death. Inclusion of livability in the Israeli breeding index is not recommended.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oxitocina , Embarazo , Femenino , Bovinos/genética , Animales , Israel , Parto , Genómica
4.
Cell Stress Chaperones ; 28(5): 445-454, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36715961

RESUMEN

Recent decades provide mounting evidence for the continual increase in global temperatures, now termed "global warming," to the point of drastic worldwide change in the climate. Climatic change is a long-term shift in temperatures and weather patterns, including increased frequency and intensity of extreme environmental events such as heat waves accompanied by extreme temperatures and high humidity. Climate change and global warming put several challenges to the livestock industry by directly affecting the animal's production, reproduction, health, and welfare. The broad impact of global warming, and in particular heat stress, on-farm animals' performance has been comprehensively studied. It has been estimated that the US livestock industry's loss caused by heat stress is up to $2.4 billion annually. However, the long-term intergenerational and transgenerational effects of climatic change and global warming on farm animals are sparse. Transgenerational effects, which are mediated by epigenetic mechanisms, can affect the animal's performance regardless of its immediate environment by altering its phenotypic expression to fit its ancestors' environment. In many animal species, environmental effects are epigenetically encoded within a narrow time interval during the organism's gametogenesis, and these epigenetic modifications can then be intergenerationally transmitted. Several epigenetic mechanisms mediate intergenerational transmission of environmental effects, typically in a parent-dependent manner. Therefore, exposure of the animal to an extreme climatic event and other environmental stressors during gametogenesis can undergo epigenetic stabilization in the germline and be passed to the offspring. As a result, the offspring might express a phenotype adjusted to fit the stressors experienced by their ancestors, regardless of their direct environment. The purpose of this perspective is to review current evidence for intergenerational and transgenerational transmission of environmental stress effects, specifically in the context of global warming and climate change, and to offer viewpoints on the possible impacts on the livestock industry.


Asunto(s)
Calentamiento Global , Ganado , Animales , Cambio Climático , Epigénesis Genética , Fenotipo
5.
Vet Sci ; 9(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36006349

RESUMEN

Phenotypic and genetic changes for female fertility and production traits in the Israeli Holstein population over the last three decades were studied in order to determine if long term selection has resulted in reduced heritability and negative genetic correlations. Annual means for conception status, defined as the inverse of the number of inseminations to conception in percent, decreased from 55.6 for cows born in 1983 to 46.5 for cows born in 2018. Mean estimated breeding values increased by 1.8% for cow born in 1981 to cows born in 2018. Phenotypic records from 1988 to 2016 for the nine Israeli breeding index traits were divided into three time periods for multi-trait REML analysis by the individual animal model. For all traits, heritabilities increased or stayed the same for the later time periods. Heritability for conception status was 0.05. The first parity genetic correlation between conception status and protein yield was -0.38. Heritabilities decreased with the increase in parity for protein but remained the same for conception status. Realized genetic trends were greater than expected for cows born from 2008 through 2016 for somatic cell score, conception status and herd-life, and lower than expected for the production traits.

6.
Sci Data ; 9(1): 469, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918364

RESUMEN

Large reference datasets of annotated genetic variations from genome-scale sequencing are essential for interpreting identified variants, their functional impact, and their possible contribution to diseases and traits. However, to date, no such database of annotated variation from broad cattle populations is publicly available. To overcome this gap and advance bovine NGS-driven variant discovery and interpretation, we obtained and analyzed raw data deposited in the SRA public repository. Short reads from 262 whole-exome sequencing samples of Bos Taurus were mapped to the Bos Taurus ARS-UCD1.2 reference genome. The GATK best practice workflow was applied for variant calling. Comprehensive annotation of all recorded variants was done using the Ensembl Variant Effect Predictor (VEP). An in-depth analysis of the population structure revealed the breeds comprising the database. The Exomes Aggregate of Bovine- ExAgBov is a comprehensively annotated dataset of more than 20 million short variants, of which ~2% are located within open reading frames, splice regions, and UTRs, and more than 60,000 variants are predicted to be deleterious.


Asunto(s)
Bovinos , Bases de Datos Genéticas , Secuenciación del Exoma , Animales , Bovinos/genética , Mapeo Cromosómico , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Polimorfismo de Nucleótido Simple
7.
Genes (Basel) ; 13(3)2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35328039

RESUMEN

Microarray-based genomic selection is a central tool to increase the genetic gain of economically significant traits in dairy cattle. Yet, the effectivity of this tool is slightly limited, as estimates based on genotype data only partially explain the observed heritability. In the analysis of the genomes of 17 Israeli Holstein bulls, we compared genotyping accuracy between whole-genome sequencing (WGS) and microarray-based techniques. Using the standard GATK pipeline, the short-variant discovery within sequence reads mapped to the reference genome (ARS-UCD1.2) was compared to the genotypes from Illumina BovineSNP50 BeadChip and to an alternative method, which computationally mimics the hybridization procedure by mapping reads to 50 bp spanning the BeadChip source sequences. The number of mismatches between the BeadChip and WGS genotypes was low (0.2%). However, 17,197 (40% of the informative SNPs) had extra variation within 50 bp of the targeted SNP site, which might interfere with hybridization-based genotyping. Consequently, with respect to genotyping errors, BeadChip varied significantly and systematically from WGS genotyping, introducing null allele-like effects and Mendelian errors (<0.5%), whereas the GATK algorithm of local de novo assembly of haplotypes successfully resolved the genotypes in the extra-variable regions. These findings suggest that the microarray design should avoid polymorphic genomic regions that are prone to extra variation and that WGS data may be used to resolve erroneous genotyping, which may partially explain missing heritability.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Genómica , Genotipo , Haplotipos/genética , Masculino , Polimorfismo de Nucleótido Simple/genética
8.
J Dairy Sci ; 105(6): 5192-5205, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35346467

RESUMEN

We performed a genetic analysis of age at first insemination, including estimation of the heritability and genetic correlations with other economic traits, and the consequences of including this trait in the Israeli selection index. The genetic factors affecting age at first insemination were determined via GWAS. Five data sets were analyzed. Data sets 1, 2, and 3 were used to compute variance components among age at first insemination, first calving age, days from first insemination to calving, and the 9 traits included in the Israel breeding index. Heritabilities for age at first insemination, calving age, and days from first insemination to calving in Israeli Holsteins as computed by REML individual animal model analyses of 273,239 Israeli Holstein cows were 0.072, 0.042, and 0.014. The estimated genetic correlation between the first 2 traits was 0.88. In addition to the fact that heritability of age at first insemination is 1.7 times the heritability for calving, the former trait has the advantage that the number of records is greater, and the records are generated earlier. Absolute values of the genetic and residual correlations between age at first insemination and the 9 traits included in the Israeli index were all less than 0.2. Data set 4 included first insemination dates of 1,181,600 calves born from 1985 through 2018. Genetic evaluations were computed by a single trait animal model. Annual phenotypic and genetic trends for age at first calving for calves born since 1985 were "positive," that is, economically negative, at 0.320 ± 0.003 and 0.169 ± 0.005 d, respectively. Applying the GCTA-GREML software, 54% of variance in the transmitting ability of 1,585 sires could be explained by considering all 40,498 markers included in the GWAS analysis. The significant markers were mainly associated with milk production genes. The SNP UA-IFASA-8854 on chromosome 11 had the lowest probability value, 1.2 × 10-24. This marker is located between the genes RETSAT and ELMOD3, both of which are overexpressed in human mammary glands. The gene RETSAT is reported to be essential for lipid accumulation and adipogenesis promotion. Gene enrichment analysis found that genes in the genomic region flanking significant markers are associated with vasopressin receptor activity, which was shown to mediate puberty in humans. If age at first insemination is included in the index with a weighting to account for 9% of the index, reductions of 2.8 and 2.6 d for age at first insemination and first calving age after 10 yr of selection are predicted, as compared with reductions of 1.4 and 1.1 d with the current index. Gains for the other index traits are only marginally affected. We suggest selection on age at first insemination as an alternative to selection for early calving.


Asunto(s)
Inseminación , Fitomejoramiento , Animales , Bovinos/genética , Femenino , Fertilidad/genética , Genoma , Genómica , Israel , Lactancia/genética , Fenotipo
9.
Genet Sel Evol ; 53(1): 69, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488634

RESUMEN

BACKGROUND: Global warming has increased the frequency of heat stress in livestock. Although heat stress directly leads to negative effects on production and reproduction traits in dairy cattle, the transgenerational transition of these changes is poorly understood. We hypothesized that heat stress in pregnant cows might induce epigenetic modifications in the developing embryo germ cells, which, in turn, might lead to phenotypic effects in the offspring. Here, we examined whether transgenerational effects of heat stress contribute to the phenotypic expression of economic traits in Israel dairy cattle. Since heat stress in Israel occurs specifically between June and October, first we examined the association of the month of birth of F1 cows (pregnancy of the F0 dam) with the performance of the F2 and F3 female offspring. Then, we calculated an annual heat stress index and examined the association of the heat stress index during the pregnancy of the F0 dam with the performance of her F2 and F3 offspring. Finally, we examined intergenerational interactions of heat stress by comparing the performance of F3 cows according to the pregnancy seasons of the F0 and F1 animals. RESULTS: We found a significant association of the month of birth, season of pregnancy, and heat stress index of F0 females, with the performance of their F2 and F3 progenies, which suggests a true transgenerational effect. The most significant transgenerational effects were on fat yield and concentration, dystocia, still-birth, and maturation. CONCLUSIONS: These findings suggest that heat stress during pregnancy affects the performance of offspring, regardless of life circumstances in at least the last three generations. Therefore, heat stress can reduce selection efficiency in breeding programs and may have economic significance in livestock.


Asunto(s)
Bovinos/genética , Industria Lechera , Trastornos de Estrés por Calor/veterinaria , Linaje , Fenotipo , Efectos Tardíos de la Exposición Prenatal/veterinaria , Animales , Epigénesis Genética , Femenino , Trastornos de Estrés por Calor/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética
10.
Eur J Hum Genet ; 29(12): 1781-1788, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34413498

RESUMEN

Infertility affects one in six couples, half of which are caused by a male factor. Male infertility can be caused by both, qualitative and quantitative defects, leading to Oligo- astheno-terato-zoospermia (OAT; impairment in ejaculate sperm cell concentration, motility and morphology). Azoospermia defined as complete absence of sperm cells in the ejaculation. While hundreds of genes are involved in spermatogenesis the genetic etiology of men's infertility remains incomplete.We identified a hemizygous stop gain pathogenic variation (PV) in the X-linked Germ Cell Nuclear Acidic Peptidase (GCNA), in an Azoospermic patient by exome sequencing. Assessment of the prevalence of pathogenic variations in this gene in infertile males by exome sequence data of 11 additional unrelated patients identified a probable hemizygous causative missense PV in GCNA in a severe OAT patient. Expression of GCNA in the patients' testes biopsies and the stage of spermatogonial developmental arrest were determined by immunofluorescence and immunohistochemistry. The Azoospermic patient presented spermatogenic maturation arrest with an almost complete absence of early and late primary spermatocytes and thus the complete absence of sperm. GCNA is critical for genome integrity and its loss results in genomic instability and infertility in Drosophila, C. elegans, zebrafish, and mouse. PVs in GCNA appear to be incompatible with male fertility in humans as well: A stop-gain PV caused Azoospermia and a missense PV caused severe OAT with very low fertilization rates and no pregnancy in numerous IVF treatments.


Asunto(s)
Infertilidad Masculina/genética , Mutación , Proteínas Nucleares/genética , Adulto , Humanos , Infertilidad Masculina/patología , Masculino , Proteínas Nucleares/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patología
11.
Genes (Basel) ; 12(5)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068476

RESUMEN

Yearling weight gain in male and female Israeli Holstein calves, defined as 365 × ((weight - 35)/age at weight) + 35, was analyzed from 814,729 records on 368,255 animals from 740 herds recorded between 1994 and 2021. The variance components were calculated based on valid records from 2008 through 2017 for each sex separately and both sexes jointly by a single-trait individual animal model analysis, which accounted for repeat records on animals. The analysis model also included the square root, linear, and quadratic effects of age at weight. Heritability and repeatability were 0.35 and 0.71 in the analysis of both sexes and similar in the single sex analyses. The regression of yearling weight gain on birth date in the complete data set was -0.96 kg/year. The complete data set was also analyzed by the same model as the variance component analysis, including both sexes and accounting for differing variance components for each sex. The genetic trend for yearling weight gain, including both sexes, was 1.02 kg/year. Genetic evaluations for yearling weight gain was positively correlated with genetic evaluations for milk, fat, protein production, and cow survival but negatively correlated with female fertility. Yearling weight gain was also correlated with the direct effect on dystocia, and increased yearling weight gain resulted in greater frequency of dystocia. Of the 1749 Israeli Holstein bulls genotyped with reliabilities >50%, 1445 had genetic evaluations. As genotyping of these bulls was performed using several single nucleotide polymorhphism (SNP) chip platforms, we included only those markers that were genotyped in >90% of the tested cohort. A total of 40,498 SNPs were retained. More than 400 markers had significant effects after permutation and correction for multiple testing (pnominal < 1 × 10-8). Considering all SNPs simultaneously, 0.69 of variance among the sires' transmitting ability was explained. There were 24 markers with coefficients of determination for yearling weight gain >0.04. One marker, BTA-75458-no-rs on chromosome 5, explained ≈6% of the variance among the estimated breeding values for yearling weight gain. ARS-BFGL-NGS-39379 had the fifth largest coefficient of determination in the current study and was also found to have a significant effect on weight at an age of 13-14 months in a previous study on Holsteins. Significant genomic effects on yearling weight gain were mainly associated with milk production quantitative trait loci, specifically with kappa casein metabolism.


Asunto(s)
Genoma/genética , Aumento de Peso/genética , Animales , Cruzamiento/métodos , Bovinos , Femenino , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Genotipo , Humanos , Israel , Masculino , Leche/metabolismo , Modelos Genéticos , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Selección Genética/genética
12.
J Dairy Sci ; 104(3): 3278-3291, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33455770

RESUMEN

The objectives were to estimate the effects of various environmental factors on female calf survival of Israeli Holsteins, to estimate the economic value of calf survival under Israeli conditions, to estimate the genetic and environmental variance components for calf and cow survival using the individual animal model, to perform GWAS analyses of survival to first calving and herd life after first calving, to estimate the genetic and environmental trends for calf survival since 1985, to estimate genetic correlations of calf survival with the traits included in the current Israeli breeding index, and to estimate the consequences of inclusion of calf survival in the national selection index. Mean calf survival rate of Israeli Holsteins from 2001 through 2008 was 0.85, and the mean economic value of survival to first calving was $526. Birth month, gestation length, dystocia, and twin birth significantly affected calf survival rate. Dystocia and twin birth each reduced survival rate by 0.034. Survival rate was highest for calves born in October and lowest for calves born in February. The difference between these months was 3.4%. Maximum survival was at a gestation length of 276 d, the mean gestation length for this population. Survival rate was reduced to 0.76 for calves born after a gestation length of 260 d. The individual animal model was applied for all the genetic analyses. Heritability for calf survival to first calving, as estimated by REML, was 0.009, whereas heritability of herd life from first calving was 0.15. The complete data set for genetic analysis of survival to first calving included 1,235,815 calves born between 1985 and 2017. Annual genetic and phenotypic trends for calf survival were 0.019 and 0.015%, respectively. Correlations of transmitting abilities of 226 sires born since 2010 for calf survival with the traits included in the Israeli breeding index were significant only for the maternal effects of dystocia and stillbirth. The GWAS analysis was based on the transmitting abilities of 1,493 bulls with genotypes and reliabilities >0.5 for calf survival and cow herd life. There were 7 single nucleotide polymorphisms with coefficients of determination >0.03 for calf survival and 12 single nucleotide polymorphisms with coefficients of determination >0.05 for cow survival. There was no overlap between the genome-wide significant markers for the GWAS analyses of calf survival and cow herd life. This corresponds to the conclusion from the REML results and the low correlations between the sire evaluations that the genetic control of the 2 traits are not similar. Inclusion of calf survival in the Israeli breeding would result in a 0.5% increase in calf survival over 10 yr but reduce progress for the other traits by 8%.


Asunto(s)
Distocia , Animales , Bovinos/genética , Distocia/veterinaria , Femenino , Israel , Masculino , Parto , Fenotipo , Embarazo , Mortinato/veterinaria
13.
mSystems ; 5(5)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082279

RESUMEN

We present a technically simple, easy-to-perform method for generating the genomic libraries for Himar-1 transposon site sequencing (Tn-seq). In addition to being simpler than present methods in the technical aspect, it also allows more robust and straightforward identification of the insertion site, by generating a longer sequence surrounding the insertion TA in the genome. The method makes Tn-seq more user-friendly and accessible to laboratories with more-limited bioinformatic resources. Finally, we created a saturated transposon-mutant library in Mycobacterium abscessus and demonstrated the usefulness of the method in analysis of genes involved in colony morphology, as well as in analysis of the whole Tn-mutant library, with identification of over 8,000 unique mutants.IMPORTANCE Transposon insertion sequencing is a powerful tool, but many researchers are discouraged by the apparent technical complexity of preparing the genomic library for deep sequencing and by the complicated computational analysis needed for insertion site identification. Our proposed method makes the preparation of the library easy and straightforward, relying on well-known molecular biology techniques. In addition, the results obtained from the deep sequencing are easily analyzed in terms of transposon insertion site identification, placing library preparation and analysis within the reach of more researchers in the microbiology community, including those with less computational and bioinformatic resources and experience. This is demonstrated by analysis of the most saturated Tn-mutant library created to date in the emerging pathogen Mycobacterium abscessus.

14.
J Med Genet ; 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503832

RESUMEN

BACKGROUND: Oligoteratoasthenozoospermia (OTA) combines deteriorated quantity, morphology and motility of the sperm, resulting in male factor infertility. METHODS: We used whole genome genotyping and exome sequencing to identify the mutation causing OTA in four men in a consanguineous Bedouin family. We expressed the normal and mutated proteins tagged with c-Myc at the carboxy termini by transfection with pCDNA3.1 plasmid constructs to evaluate the effects on protein stability in HEK293 cells and on the kinetics of actin repolymerisation in retinal pigment epithelium cells. Patients' sperm samples were visualised by transmission electron microscopy to determine axoneme structures and were stained with fluorescent phalloidin to visualise the fibrillar (F)-actin. RESULTS: A homozygous missense mutation in Ciliogenesis Associated TTC17 Interacting Protein (CATIP): c. T103A, p. Phe35Ile, a gene encoding a protein important in actin organisation and ciliogenesis, was identified as the causative mutation with a LOD score of 3.25. The mutation reduces the protein stability compared with the normal protein. Furthermore, overexpression of the normal protein, but not the mutated protein, inhibits repolymerisation of actin after disruption with cytochalasin D. A high percentage of spermatozoa axonemes from patients have abnormalities, as well as disturbances in the distribution of F-actin. CONCLUSION: This is the first report of a recessive mutation in CATIP in humans. The identified mutation may contribute to asthenozoospermia by its involvement in actin polymerisation and on the actin cytoskeleton. A mouse knockout homozygote for CATIP was reported to demonstrate male infertility as the sole phenotype.

15.
J Dairy Sci ; 103(5): 4495-4509, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32113774

RESUMEN

One of the causes of observed low fertility is embryo loss after fertilization. Previous findings suggested that more than half of fertilizations result in embryo loss before pregnancy is detected. We proposed reinsemination between 49 and 100 d after the first insemination as an indicator trait for early abortion (EA) in dairy cattle based on the mean estrus interval of 21 d. This trait was compared with conception rate from first insemination and conception status, computed as the inverse of the number of inseminations to conception. Animal model variance components were estimated by REML, including parents and grandparents of cows with records. First-parity heritability for first insemination conception rate was 3%. In the multitrait analysis of parities 1 to 3 for putative EA, heritabilities ranged from 8.9% for first parity to 10.4% for second parity. All genetic correlations were >0.9, whereas all environmental correlations were <0.12. The variance component for the service sire effect for putative EA rate was less than half the variance component for conception rate. Thus, genetic control of the 2 traits is clearly different, and analysis of EA rate by a single-trait animal model is justified. Genetic evaluation for putative EA was computed using this model, including all first- through third-parity cows with freshening dates from January 1, 1985, through December 31, 2016, that either became pregnant on first insemination or were reinseminated between 49 and 100 d after the first insemination. All known parents and grandparents of cows with records were included in the analysis. The regression of the breeding value for non-abortion rate on the cows' birth year was 0.083%/yr. The genetic correlation between first-parity EA and conception status was 0.995. The genetic correlations between first-parity EA and milk, fat, and protein production were all negative, whereas the genetic correlation between EA and herd life was 0.33. Inclusion of putative EA in the selection index instead of conception status resulted in 10 to 20% greater genetic gain for both fertility traits. In a genome-wide association study based on 1,200 dairy bulls with reliabilities >50% for abortion rate genotyped for 41,000 markers, 6 markers were found with nominal probabilities of <10-12 to reject the null hypothesis of no effect on EA rate. The markers with the lowest probabilities for EA rate were also included among the markers with the lowest probabilities for female fertility, but not vice versa. The marker explaining the most variance for abortion rate is located within the ABCA9 gene, which is found within an ATP-binding cassette (ABC) genes cluster. The ABC family is the major class of primary active transporters in the placenta.


Asunto(s)
Aborto Veterinario/genética , Enfermedades de los Bovinos/genética , Estudio de Asociación del Genoma Completo , Inseminación , Animales , Bovinos/fisiología , Femenino , Israel , Factores de Tiempo
16.
BMC Genet ; 20(1): 71, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462216

RESUMEN

BACKGROUND: Crossover localization during meiotic recombination is mediated by the fast-evolving zinc-finger (ZnF) domain of gene PRDM9. To study its impact on dairy cattle performance, we compared its genetic variation between the relatively small Israeli (IL) Holsteins and the North American (US) Holsteins that count millions. RESULTS: Initially, we analyzed the major BTA1 haplotypes present in IL Holsteins based on the 10 most telomeric SNPs of the BovineSNP50 BeadChip. Sequencing of representative haplotype carriers indicated that for all frequent haplotypes (> 6%), the variable PRDM9 ZnF array consisted of seven tandem ZnF repeats. Two rare haplotypes (frequency < 4%) carried an indicine PRDM9, whereas all others were variants of the taurine type. These two haplotypes included the minor SNP allele, which was perfectly linked with a previously described PRDM9 allele known to induce unique localization of recombination hotspots. One of them had a significant (p = 0.03) negative effect on IL sire fertility. This haplotype combined the rare minor alleles of the only SNPs with significant (p < 0.05) negative substitution effects on US sire fertility (SCR). Analysis of telomeric SNPs indicated general agreement of allele frequencies (R = 0.95) and of the substitution effects on sire fertility (SCR, R = 0.6) between the US and IL samples. Surprisingly, the alleles that had a negative impact on male fertility had the most positive substitution effects on female fertility traits (DPR, CCR and HCR). CONCLUSIONS: A negative genetic correlation between male and female fertility is encoded within the BTA1 telomere. Cloning the taurine PRDM9 gene, which is the common form carried by Holsteins, we encountered the infiltration of an indicine PRDM9 variant into this population. During meiosis, in heterozygous males, the indicine PRDM9 variant may induce incompatibility of recombination hotspots and male infertility. However, this variant is associated with favorable female fertility, which would explain its survival and the general negative correlation (R = - 0.3) observed between male and female fertility in US Holsteins. Further research is needed to explain the mechanism underlying this positive effect and to devise a methodology to unlink it from the negative effect on male fertility during breeding.


Asunto(s)
Fertilidad/genética , Sitios Genéticos , N-Metiltransferasa de Histona-Lisina/genética , Hibridación Genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Clonación Molecular , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes , Haplotipos , Masculino , Polimorfismo de Nucleótido Simple , Recombinación Genética
17.
Hum Reprod ; 34(4): 666-671, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30838384

RESUMEN

STUDY QUESTION: Are there genetic variants that can be used for the clinical evaluation of azoospermic men? SUMMARY ANSWER: A novel homozygous frame-shift mutation in the MEIOB gene was identified in three azoospermic patients from two different families. WHAT IS KNOWN ALREADY: Up to 1% of all men have complete absence of sperm in the semen, a condition known as azoospermia. There are very few tools for determining the etiology of azoospermia and the likelihood of sperm cells in the testis. The MEIOB gene codes for a single-strand DNA binding protein required for DNA double-strand breaks repair during meiosis. MEIOB appears to be exclusively expressed in human and mouse testis, and MeioB knockout mice are azoospermic due to meiotic arrest. STUDY DESIGN, SIZE, DURATION: Two brothers with non-obstructive azoospermia (NOA) underwent whole-exome sequencing followed by comprehensive bioinformatics analyses. Candidate variations were further screened in infertile and fertile men, as well as in public and local reference databases. PARTICIPANTS/MATERIALS, SETTING, METHODS: This study included 159 infertile and 77 fertile men. The exomes of two Arab men were completely sequenced. In addition, 213 other men of the same Arab ethnicity (136 infertile and 77 fertile men) underwent restriction fragment length polymorphism (RFLP) screening, as did 21 NOA men, of other ethnicities, with testicular impairment of spermatocyte arrest. All of the infertile men underwent Y-chromosome microdeletion and CFTR gene mutation assessments. Comprehensive bioinformatics analyses were designed to uncover candidate mutations associated with azoospermia. MAIN RESULTS AND THE ROLE OF CHANCE: A novel homozygous frame-shift mutation in the MEIOB gene was identified in two brothers of Arab ethnicity. This frame-shift is predicted to result in a truncated MEIOB protein, which lacks the conserved C-terminal DNA binding domain. RFLP screening of the mutation in 157 infertile men, including 112 NOA patients of Arab ethnicity, identified an additional unrelated NOA patient with the same homozygous mutation and a similar testicular impairment. This mutation was not found in available public databases (n > 160 000), nor in the 77 proven fertile men, nor in our database of local Israeli population variations derived from exome and genome sequencing data (n = 500). LIMITATIONS, REASONS FOR CAUTION: We have thus far screened for only two specific MEIOB probable pathogenic mutations in a relatively small local cohort. Therefore, the relative incidence of MEIOB mutations in azoospermia should be further assessed in larger and diverse cohorts in order to determine the efficiency of MEIOB sequence screening for clinical evaluations. WIDER IMPLICATIONS OF THE FINDINGS: The relatively high incidence of likely NOA-causing mutations in MEIOB that was found in our cohort supports the idea that a complete screening of this gene might be beneficial for clinical evaluation of NOA patients. STUDY FUNDING/COMPETING INTEREST(S): This research was supported in part by a grant to EA from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC grant agreement (616088). There are no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Azoospermia/genética , Proteínas de Unión al ADN/genética , Meiosis/genética , Mutación , Testículo/metabolismo , Adulto , Árabes/genética , Azoospermia/diagnóstico , Azoospermia/etnología , Azoospermia/patología , Estudios de Cohortes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Linaje , Hermanos , Secuenciación del Exoma
18.
Autophagy ; 15(3): 438-452, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30238850

RESUMEN

Macroautophagy/autophagy is a conserved catabolic process that maintains cellular homeostasis under basal growth and stress conditions. In cancer, autophagy can either prevent or promote tumor growth, at early or advanced stages, respectively. We screened public databases to identify autophagy-related somatic mutations in cancer, using a computational approach to identify cancer mutational target sites, employing exact statistics. The top significant hit was a missense mutation (Y113C) in the MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) protein, which occurred at a significant frequency in cancer, and was detected in early stages in primary tumors of patients with known tumor lineage. The mutation reduced the formation of GFP-LC3B puncta and attenuated LC3B lipidation during Torin1-induced autophagy. Its effect on the direct physical interaction of LC3B with each of the 4 proteins that control its maturation or lipidation was tested by applying a protein-fragment complementation assay and co-immunoprecipitation experiments. Interactions with ATG4A and ATG4B proteases were reduced, yet without perturbing the cleavage of mutant LC3B. Most importantly, the mutation significantly reduced the interaction with the E1-like enzyme ATG7, but not the direct interaction with the E2-like enzyme ATG3, suggesting a selective perturbation in the binding of LC3B to some of its partner proteins. Structure analysis and molecular dynamics simulations of LC3B protein and its mutant suggest that the mutation changes the conformation of a loop that has several contact sites with ATG4B and the ATG7 homodimer. We suggest that this loss-of-function mutation, which attenuates autophagy, may promote early stages of cancer development.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias/genética , Autofagia/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia/química , Proteína 7 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Biología Computacional , Cisteína Endopeptidasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/química , Mutación Missense , Naftiridinas/farmacología , Enzimas Ubiquitina-Conjugadoras/metabolismo
19.
Genet Med ; 19(9): 998-1006, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28206990

RESUMEN

PURPOSE: Up to 1% of all men experience azoospermia, a condition of complete absence of sperm in the semen. The mechanisms and genes involved in spermatogenesis are mainly studied in model organisms, and their relevance to humans is unclear because human genetic studies are very scarce. Our objective was to uncover novel human mutations and genes causing azoospermia due to testicular meiotic maturation arrest. METHODS: Affected and unaffected siblings from three families were subjected to whole-exome or whole-genome sequencing, followed by comprehensive bioinformatics analyses to identify mutations suspected to cause azoospermia. These likely mutations were further screened in azoospermic and normozoospermic men and in men proven to be fertile, as well as in a reference database of local populations. RESULTS: We identified three novel likely causative mutations of azoospermia in three genes: MEIOB, TEX14, and DNAH6. These genes are associated with different meiotic processes: meiotic crossovers, daughter cell abscission, and possibly rapid prophase movements. CONCLUSION: The genes and pathways we identified are fundamental for delineating common causes of azoospermia originating in mutations affecting diverse meiotic processes and have great potential for accelerating approaches to diagnose, treat, and prevent infertility.Genet Med advance online publication 16 February 2017.


Asunto(s)
Azoospermia/diagnóstico , Azoospermia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Secuencia de Aminoácidos , Biomarcadores , Biopsia , Estudios de Casos y Controles , Consanguinidad , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Dineínas/genética , Familia , Pruebas Genéticas , Genotipo , Humanos , Hibridación Fluorescente in Situ , Masculino , Linaje , Espermatozoides/metabolismo
20.
BMC Biol ; 15(1): 7, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28173793

RESUMEN

BACKGROUND: The prevalence of several human morbid phenotypes is sometimes much higher than intuitively expected. This can directly arise from the presence of two sexes, male and female, in one species. Men and women have almost identical genomes but are distinctly dimorphic, with dissimilar disease susceptibilities. Sexually dimorphic traits mainly result from differential expression of genes present in both sexes. Such genes can be subject to different, and even opposing, selection constraints in the two sexes. This can impact human evolution by differential selection on mutations with dissimilar effects on the two sexes. RESULTS: We comprehensively mapped human sex-differential genetic architecture across 53 tissues. Analyzing available RNA-sequencing data from 544 adults revealed thousands of genes differentially expressed in the reproductive tracts and tissues common to both sexes. Sex-differential genes are related to various biological systems, and suggest new insights into the pathophysiology of diverse human diseases. We also identified a significant association between sex-specific gene transcription and reduced selection efficiency and accumulation of deleterious mutations, which might affect the prevalence of different traits and diseases. Interestingly, many of the sex-specific genes that also undergo reduced selection efficiency are essential for successful reproduction in men or women. This seeming paradox might partially explain the high incidence of human infertility. CONCLUSIONS: This work provides a comprehensive overview of the sex-differential transcriptome and its importance to human evolution and human physiology in health and in disease.


Asunto(s)
Selección Genética , Caracteres Sexuales , Transcriptoma/genética , Adulto , Anciano , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genética de Población , Humanos , Masculino , Persona de Mediana Edad , Sistemas de Lectura Abierta/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...