Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; 12(6): 787-793, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37220638

RESUMEN

Pressure-sensitive adhesives (PSAs) based on poly(acrylate) chemistry are common in a wide variety of applications, but the absence of backbone degradability causes issues with recycling and sustainability. Here, we report a strategy to create degradable poly(acrylate) PSAs using simple, scalable, and functional 1,2-dithiolanes as drop-in replacements for traditional acrylate comonomers. Our key building block is α-lipoic acid, a natural, biocompatible, and commercially available antioxidant found in various consumer supplements. α-Lipoic acid and its derivative ethyl lipoate efficiently copolymerize with n-butyl acrylate under conventional free-radical conditions leading to high-molecular-weight copolymers (Mn > 100 kg mol-1) containing a tunable concentration of degradable disulfide bonds along the backbone. The thermal and viscoelastic properties of these materials are practically indistinguishable from nondegradable poly(acrylate) analogues, but a significant reduction in molecular weight is realized upon exposure to reducing agents such as tris (2-carboxyethyl) phosphine (e.g., Mn = 198 kg mol-1 → 2.6 kg mol-1). By virtue of the thiol chain ends produced after disulfide cleavage, degraded oligomers can be further cycled between high and low molecular weights through oxidative repolymerization and reductive degradation. Transforming otherwise persistent poly(acrylates) into recyclable materials using simple and versatile chemistry could play a pivotal role in improving the sustainability of contemporary adhesives.

2.
J Am Chem Soc ; 143(26): 9866-9871, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34170665

RESUMEN

We introduce a novel grafting-through polymerization strategy to synthesize dynamic bottlebrush polymers and elastomers in one step using light to construct a disulfide-containing backbone. The key starting material-α-lipoic acid (LA)-is commercially available, inexpensive, and biocompatible. When installed on the chain end(s) of poly(dimethylsiloxane) (PDMS), the cyclic disulfide unit derived from LA polymerizes under ultraviolet (UV) light in ambient conditions. Significantly, no additives such as initiator, solvent, or catalyst are required for efficient gelation. Formulations that include bis-LA-functionalized cross-linker yield bottlebrush elastomers with high gel fractions (83-98%) and tunable, supersoft shear moduli in the ∼20-200 kPa range. An added advantage of these materials is the dynamic disulfide bonds along each bottlebrush backbone, which allow for light-mediated self-healing and on-demand chemical degradation. These results highlight the potential of simple and scalable synthetic routes to generate unique bottlebrush polymers and elastomers based on PDMS.

3.
ACS Appl Mater Interfaces ; 13(2): 3161-3165, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33401911

RESUMEN

A modular approach to synthesizing functional pressure sensitive adhesives (PSAs) was introduced, wherein a modifiable acrylic PSA copolymer was synthesized by copolymerizing common PSA monomers with 6 mol % glycidyl methacrylate, allowing for subsequent functional group modification via the pendant epoxide functionality. This postmodification technique has the advantage of allowing the installation of a variety of functional groups relevant to adhesion, without variation of molecular weight. Because comparisons of cohesive and adhesive performance of candidate PSAs can be complicated by molecular weight differences, this strategy simplifies direct comparisons of the effects of functional groups on performance. As a proof of concept, a mussel-inspired catecholic PSA was synthesized by postreaction of the epoxide scaffold polymer with a thiol-modified catechol, allowing the effect of catechol on underlying structure-property relationships to be determined without variation in molecular weight. The mechanical performance of catecholic PSA was compared to relevant control PSAs by using industry-standard 180° peel and static shear tests, revealing an increase in peel strength achieved through catechol modification. Moreover, we observed an unexpected enhancement in PSA cohesive strength attributed to oxidation of catechol, which cannot be attributed to differences in molecular weight, a common source of changes in PSA cohesive strength.

4.
Angew Chem Int Ed Engl ; 59(38): 16616-16624, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32537907

RESUMEN

The outstanding adhesive performance of mussel byssal threads has inspired materials scientists over the past few decades. Exploiting the amino-catechol synergy, polymeric pressure-sensitive adhesives (PSAs) have now been synthesized by copolymerizing traditional PSA monomers, butyl acrylate and acrylic acid, with mussel-inspired lysine- and aromatic-rich monomers. The consequences of decoupling amino and catechol moieties from each other were compared (that is, incorporated as separate monomers) against a monomer architecture in which the catechol and amine were coupled together in a fixed orientation in the monomer side chain. Adhesion assays were used to probe performance at the molecular, microscopic, and macroscopic levels by a combination of AFM-assisted force spectroscopy, peel and static shear adhesion. Coupling of catechols and amines in the same monomer side chain produced optimal cooperative effects in improving the macroscopic adhesion performance.


Asunto(s)
Adhesivos/química , Aminas/química , Catecoles/química , Estructura Molecular , Presión
5.
ACS Appl Mater Interfaces ; 11(31): 28296-28306, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31310493

RESUMEN

The byssus-mediated adhesion of marine mussels is a widely mimicked system for robust adhesion in both dry and wet conditions. Mussel holdfasts are fabricated from proteins that contain a significant amount of the unique catecholic amino acid dihydroxyphenylalanine, which plays a key role in enhancing interfacial adhesion to organic and inorganic marine surfaces and contributes to cohesive strength of the holdfast. In this work, pressure-sensitive adhesives (PSAs) were synthesized by copolymerization of dopamine methacrylamide (DMA) with common PSA monomers, butyl acrylate and acrylic acid, with careful attention paid to the effects of catechol on adhesive and cohesive properties. A combination of microscopic and macroscopic adhesion assays was used to study the effect of catechol on adhesion performance of acrylic PSAs. Addition of only 5% DMA to a conventional PSA copolymer containing butyl acrylate and acrylic acid resulted in 6-fold and 2.5-fold increases in work required to separate the PSA from silica and polystyrene, respectively, and a large increase in 180° peel adhesion against stainless steel after 24 h storage in both ambient and underwater conditions. Moreover, the holding power of the catechol PSAs on both steel and high-density polyethylene under shear load continuously increased as a function of catechol concentration, up to a maximum of 10% DMA. We also observed stark increases in shear and peel adhesion for the catecholic adhesives over PSAs with noncatecholic aromatic motifs, further underlining the benefits of catechols in PSAs. Overall, catechol PSAs perform extremely well on polar and metallic surfaces. The advantage of incorporating catechols in PSA formulations, however, is less straightforward for peel adhesion in nonpolar, organic substrates and tackiness of the PSAs.


Asunto(s)
Adhesivos/química , Adhesivos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/síntesis química , Dopamina/química , Metacrilatos/química , Polimerizacion , Presión
6.
Langmuir ; 30(45): 13588-95, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25343527

RESUMEN

Drying of thin latex films (∼20 µm) at high drying speeds (of the order of seconds) has been studied by fast chemical imaging. ATR-FTIR spectroscopic imaging combined with a fast "kinetic" mode was used to acquire spectral images without coaddition, enabling the amount of water and homogeneity of the drying film to be studied over time. Drying profiles, constructed from analyzing the water content in each image, show two stages of drying, a fast and a slow region. The formulation of latex dispersions affects the onset of slow drying and the volume fraction of water remaining at the onset of slow drying. In this work, the effect of physical properties, film thickness and glass transition temperature (Tg), were investigated, as well as the effect of monomer composition where two monomoers, 2-ethylhexyl acrylate and n-butyl acrylate, and the amount of hydrophilic comonomer, methyl methacrylate (MMA), were varied. It was found that thicker films produced slower overall drying and that the formulation with a Tg above the minimum film formation temperature did not dry evenly, exhibiting cracking. However, the drying kinetics of high and low Tg films were similar, highlighting the advantage of using a spatially-resolved spectroscopic approach. Formulations containing more MMA dried faster than those with less. This was due to the hydrophilicity of MMA and the increase in Tg of the dispersion from the addition of MMA. Overall, FTIR spectroscopic imaging was shown to be a suitable approach in measuring film drying at high speeds as both chemical changes and chemical distribution could be analyzed over time.

7.
Int J Toxicol ; 31(1): 46-57, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22267870

RESUMEN

Aqueous polymer dispersions are important raw materials used in a variety of industrial processes. They may contain particles with diameters ranging from 10 to 1500 nm. Polymer exposure alone may cause pulmonary lesions after inhalation exposure. Polymer dispersions with increased proportions of nano-sized particles are being developed for improved material characteristics, and this may pose even increased pulmonary hazards upon potential inhalation exposure. In a 5-day screening study, male rats were nose-only exposed to aerosols generated from 2 dispersions of acrylic ester polymers with identical chemical composition but different nano-sized particle proportions at particle concentrations of 3 and 10 mg/m³. Immediately and 19 days after the end of inhalation, necropsies were conducted with major emphasis on respiratory tract histopathology. Three and 23 days after the end of inhalation, bronchoalveolar lavage was performed to screen for early pulmonary injury and inflammation. In contrast to the adverse effects known for other materials in short-term inhalation studies, none of the tested preparations of acrylic ester polymers elicited any adverse effect at the end of the inhalation or postinhalation periods. No shift in toxicity could be observed by the increased proportion of nano-sized polymer particles. Under the conditions of this study, the no observable adverse effect levels for both preparations were >10 mg/m³, that is 2- to 3-fold beyond current nuisance dust threshold limit values.


Asunto(s)
Acrilatos/toxicidad , Nanopartículas/toxicidad , Polímeros/toxicidad , Administración por Inhalación , Aerosoles , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Pulmón/anatomía & histología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Nivel sin Efectos Adversos Observados , Tamaño de la Partícula , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...