Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947101

RESUMEN

In this review, the phenomenon of grain boundary (GB) wetting by the second solid phase is analyzed for the high entropy alloys (HEAs). Similar to the GB wetting by the liquid phase, the GB wetting by the second solid phase can be incomplete (partial) or complete. In the former case, the second solid phase forms in the GB of a matrix, the chain of (usually lenticular) precipitates with a certain non-zero contact angle. In the latter case, it forms in the GB continuous layers between matrix grains which completely separate the matrix crystallites. The GB wetting by the second solid phase can be observed in HEAs produced by all solidification-based technologies. The particle chains or continuous layers of a second solid phase form in GBs also without the mediation of a liquid phase, for example by solid-phase sintering or coatings deposition. To describe the GB wetting by the second solid phase, the new GB tie-lines should be considered in the two- or multiphase areas in the multicomponent phase diagrams for HEAs. The GB wetting by the second solid phase can be used to improve the properties of HEAs by applying the so-called grain boundary engineering methods.

2.
Materials (Basel) ; 12(24)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888233

RESUMEN

The present study is dedicated to the microstructure characterization of the as-cast high entropy intermetallics that undergo a martensitic transformation, which is associated with the shape memory effect. It is shown that the TiZrHfCoNiCu system exhibits strong dendritic liquation, which leads to the formation of martensite crystals inside the dendrites. In contrast, in the CoNiCuAlGaIn system the dendritic liquation allows the martensite crystals to form only in interdendritic regions. This phenomenon together with the peculiarities of chemical inhomogeneities formed upon crystallization of this novel multicomponent shape memory alloys systems will be analyzed and discussed.

3.
Microsc Res Tech ; 79(4): 321-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26854331

RESUMEN

To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel.

4.
Materials (Basel) ; 8(1): 285-301, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28787938

RESUMEN

In the current work, the evolutions of grain and dislocation microstructures are investigated on the basis of plane strain tension and simple shear tests for an interstitial free steel (DC06) and a 6000 series aluminum alloy (AA6016-T4). Both materials are commonly-used materials in the automobile industry. The focus of this contribution is on the characterization and comparison of the microstructure formation in DC06 and AA6016-T4. Our observations shed light on the active mechanisms at the micro scale governing the macroscopic response. This knowledge is of great importance to understand the physical deformation mechanisms, allowing the control and design of new, tailor-made materials with the desired material behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...