Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Andrology ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804843

RESUMEN

BACKGROUND: Factors contributing to the limited success of in vitro fertilization in horses remain to be studied. In this work, we elucidated the effect of different essential capacitation media components, bicarbonate, and bovine serum albumin or polyvinyl-alcohol, and the incubation microenvironment on sperm parameters associated with capacitation, acrosome reaction, and their ability to activate oocytes via heterologous intracytoplasmic spermatozoa injection in equine cryopreserved spermatozoa. METHODS: Frozen-thawed spermatozoa underwent incubation at different time intervals in either Tyrode's albumin lactate pyruvate medium (non-capacitating; NC) or Tyrode's albumin lactate pyruvate supplemented with bicarbonate, bicarbonate and polyvinyl-alcohol, bicarbonate and bovine serum albumin, polyvinyl-alcohol and bovine serum albumin alone. Protein kinase A-phosphorylated substrates and tyrosine phosphorylation levels, sperm motility, and acrosome reaction percentages were evaluated. After determining the best condition media (capacitating; CAP), heterologous intracytoplasmic spermatozoa injection on pig oocytes was performed and the phospholipase C zeta sperm localization pattern was evaluated. RESULTS: Incubation of frozen-thawed equine spermatozoa with bicarbonate and polyvinyl-alcohol in atmospheric air for 45 min induced an increase in protein kinase A-phosphorylated substrates and tyrosine phosphorylation levels compared to NC condition. Sperm incubation in bicarbonate and polyvinyl-alcohol medium showed an increase in total motility and progressive motility with respect to NC (p ≤ 0.05). Interestingly, three parameters associated with sperm hyperactivation were modulated under bicarbonate and polyvinyl-alcohol conditions. The kinematic parameters curvilinear velocity and amplitude of lateral head displacement significantly increased, while straightness significantly diminished (curvilinear velocity: bicarbonate and polyvinyl-alcohol = 120.9 ± 2.9 vs. NC = 76.91 ± 6.9 µm/s) (amplitude of lateral head displacement: bicarbonate and polyvinyl-alcohol = 1.15 ± 0.02 vs. NC = 0.77 ± 0.03 µm) (straightness: bicarbonate and polyvinyl-alcohol = 0.76 ± 0.01 vs. NC = 0.87 ± 0.02) (p ≤ 0.05). Moreover, the spontaneous acrosome reaction significantly increased in spermatozoa incubated in this condition. Finally, bicarbonate and polyvinyl-alcohol medium was established as CAP medium. Although no differences were found in phospholipase C zeta localization pattern in spermatozoa incubated under CAP, equine spermatozoa pre-incubated in CAP condition for 45 min showed higher fertilization rates when injected into matured pig oocytes (NC: 47.6% vs. CAP 76.5%; p ≤ 0.05). CONCLUSION: These findings underscore the importance of bicarbonate and polyvinyl-alcohol in supporting critical events associated with in vitro sperm capacitation in the horse, resulting in higher oocyte activation percentages following heterologous intracytoplasmic spermatozoa injection. This protocol could have an impact on reproductive efficiency in the equine breeding industry.

2.
Proc Natl Acad Sci U S A ; 120(37): e2306797120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37676910

RESUMEN

Regulatory T cells (Tregs) modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, we show that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. We found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of antisperm antibodies (ASA). In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects. Deciphering these immunoregulatory mechanisms may help to design new strategies to treat male infertility, as well as to identify potential targets for immunocontraception.


Asunto(s)
Semen , Linfocitos T Reguladores , Masculino , Animales , Ratones , Humanos , Espermatozoides , Tolerancia Inmunológica , Anticuerpos , Fertilidad
3.
Front Immunol ; 12: 712123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394114

RESUMEN

The WC1 cell surface family of molecules function as hybrid gamma delta (γδ) TCR co-receptors, augmenting cellular responses when cross-linked with the TCR, and as pattern recognition receptors, binding pathogens. It is known that following activation, key tyrosines are phosphorylated in the intracytoplasmic domains of WC1 molecules and that the cells fail to respond when WC1 is knocked down or, as shown here, when physically separated from the TCR. Based on these results we hypothesized that the colocalization of WC1 and TCR will occur following cellular activation thereby allowing signaling to ensue. We evaluated the spatio-temporal dynamics of their interaction using imaging flow cytometry and stochastic optical reconstruction microscopy. We found that in quiescent γδ T cells both WC1 and TCR existed in separate and spatially stable protein domains (protein islands) but after activation using Leptospira, our model system, that they concatenated. The association between WC1 and TCR was close enough for fluorescence resonance energy transfer. Prior to concatenating with the WC1 co-receptor, γδ T cells had clustering of TCR-CD3 complexes and exclusion of CD45. γδ T cells may individually express more than one variant of the WC1 family of molecules and we found that individual WC1 variants are clustered in separate protein islands in quiescent cells. However, the islands containing different variants merged following cell activation and before merging with the TCR islands. While WC1 was previously shown to bind Leptospira in solution, here we showed that Leptospira bound WC1 proteins on the surface of γδ T cells and that this could be blocked by anti-WC1 antibodies. In conclusion, γδ TCR, WC1 and Leptospira interact directly on the γδ T cell surface, further supporting the role of WC1 in γδ T cell pathogen recognition and cellular activation.


Asunto(s)
Citometría de Flujo/métodos , Leptospira/inmunología , Activación de Linfocitos , Glicoproteínas de Membrana/inmunología , Microscopía Fluorescente/métodos , Mapeo de Interacción de Proteínas/métodos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Vacunas Bacterianas , Complejo CD3/inmunología , Bovinos , Enfermedades de los Bovinos/prevención & control , Transferencia Resonante de Energía de Fluorescencia , Memoria Inmunológica , Leptospira/ultraestructura , Leptospirosis/prevención & control , Leptospirosis/veterinaria , Unión Proteica , Procesos Estocásticos , Subgrupos de Linfocitos T/ultraestructura , Vacunas de Productos Inactivados
4.
Elife ; 102021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33620316

RESUMEN

The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here, we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis.


Asunto(s)
Células de Sertoli/metabolismo , Espermatogénesis/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Genes Ligados a X , Masculino , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas/deficiencia
5.
Biol Reprod ; 103(4): 791-801, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32614044

RESUMEN

Mammalian sperm are stored in the epididymis in a dormant state. Upon ejaculation, they must immediately start producing sufficient energy to maintain motility and support capacitation. While this increased energy demand during capacitation is well established, it remains unclear how mouse sperm modify their metabolism to meet this need. We now show that capacitating mouse sperm enhance glucose uptake, identifying glucose uptake as a functional marker of capacitation. Using an extracellular flux analyzer, we show that glycolysis and oxidative phosphorylation increase during capacitation. Furthermore, this increase in oxidative phosphorylation is dependent on glycolysis, providing experimental evidence for a link between glycolysis and oxidative phosphorylation in mouse sperm.


Asunto(s)
Metabolismo Energético/fisiología , Capacitación Espermática/fisiología , Espermatozoides/metabolismo , Animales , Supervivencia Celular , Glucosa/metabolismo , Glucólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Zona Pelúcida/fisiología
6.
Biol Reprod ; 100(2): 440-454, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239614

RESUMEN

Mammalian sperm undergo a series of biochemical and physiological changes collectively known as capacitation in order to acquire the ability to fertilize. Although the increase in phosphorylation associated with mouse sperm capacitation is well established, the identity of the proteins involved in this signaling cascade remains largely unknown. Tandem mass spectrometry (MS/MS) has been used to identify the exact sites of phosphorylation and to compare the relative extent of phosphorylation at these sites. In the present work, we find that a novel site of phosphorylation on a peptide derived from the radial spoke protein Rsph6a is more phosphorylated in capacitated mouse sperm. The Rsph6a gene has six exons, five of which are conserved during evolution in flagellated cells. The exon containing the capacitation-induced phosphorylation site was found exclusively in eutherian mammals. Transcript analyses revealed at least two different testis-specific splicing variants for Rsph6a.Rsph6a mRNA expression was restricted to spermatocytes. Using antibodies generated against the Rsph6a N-terminal domain, western blotting and immunofluorescence analyses indicated that the protein remains in mature sperm and localizes to the sperm flagellum. Consistent with its role in the axoneme, solubility analyses revealed that Rsph6 is attached to cytoskeletal structures. Based on previous studies in Chlamydomonas reinhardtii, we predict that Rsph6 participates in the interaction between the central pair of microtubules and the surrounding pairs. The findings that Rsph6a is more phosphorylated during capacitation and is predicted to function in axonemal localization make Rsph6a a candidate protein mediating signaling processes in the sperm flagellum.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Capacitación Espermática/fisiología , Testículo/metabolismo , Animales , Anticuerpos , Clonación Molecular , Proteínas del Citoesqueleto/genética , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes
7.
Mol Reprod Dev ; 83(10): 860-874, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27256723

RESUMEN

Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc.


Asunto(s)
Fertilización In Vitro/métodos , Fertilización In Vitro/tendencias , Capacitación Espermática , Animales , Femenino , Fertilización In Vitro/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino
8.
Development ; 143(13): 2325-33, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226326

RESUMEN

Sperm capacitation is required for fertilization. At the molecular level, this process is associated with fast activation of protein kinase A. Downstream of this event, capacitating conditions lead to an increase in tyrosine phosphorylation. The identity of the tyrosine kinase(s) mediating this process has not been conclusively demonstrated. Recent experiments using stallion and human sperm have suggested a role for PYK2 based on the use of small molecule inhibitors directed against this kinase. However, crucially, loss-of-function experiments have not been reported. Here, we used both pharmacological inhibitors and genetically modified mice models to investigate the identity of the tyrosine kinase(s) mediating the increase in tyrosine phosphorylation in mouse sperm. Similar to stallion and human, PF431396 blocks the capacitation-associated increase in tyrosine phosphorylation. Yet, sperm from Pyk2(-/-) mice displayed a normal increase in tyrosine phosphorylation, implying that PYK2 is not responsible for this phosphorylation process. Here, we show that PF431396 can also inhibit FER, a tyrosine kinase known to be present in sperm. Sperm from mice targeted with a kinase-inactivating mutation in Fer failed to undergo capacitation-associated increases in tyrosine phosphorylation. Although these mice are fertile, their sperm displayed a reduced ability to fertilize metaphase II-arrested eggs in vitro.


Asunto(s)
Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Capacitación Espermática/fisiología , Espermatozoides/enzimología , Animales , Quinasa 2 de Adhesión Focal/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosforilación
9.
Mol Hum Reprod ; 20(1): 89-99, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23907162

RESUMEN

Sperm capacitation has been largely associated with an increase in cAMP, although its relevance in the underlying mechanisms of this maturation process remains elusive. Increasing evidence shows that the extrusion of cAMP through multidrug resistance associated protein 4 (MRP4) regulates cell homeostasis not only in physiological but also in pathophysiological situations and studies from our laboratory strongly support this assumption. In the present work we sought to establish the role of cAMP efflux in the regulation of sperm capacitation. Sperm capacitation was performed in vitro by exposing bovine spermatozoa to bicarbonate 40 and 70 mM; cAMP; probenecid (a MRPs general inhibitor) and an adenosine type 1 receptor (A1 adenosine receptor) selective antagonist (DPCPX). Capacitation was assessed by chlortetracycline assay and lysophosphatidylcholine-induced acrosome reaction assessed by PSA-FITC staining. Intracellular and extracellular cAMP was measured by radiobinding the regulatory subunit of PKA under the same experimental conditions. MRP4 was detected by western blot and immunohistochemistry assays. Results showed that the inhibition of soluble adenylyl cyclase significantly inhibited bicarbonate-induced sperm capacitation. Furthermore, in the presence of 40 and 70 mM bicarbonate bovine spermatozoa synthesized and extruded cAMP. Interestingly, in the absence of IBMX (a PDEs inhibitor) cAMP efflux still operated in sperm cells, suggesting that cAMP extrusion would be a physiological process in the spermatozoa complementary to the action of PDE. Blockade of MRPs by probenecid abolished the efflux of the cyclic nucleotide resulting not only in the accumulation of intracellular cAMP but also in the inhibition of bicarbonate-induced sperm capacitation. The effect of probenecid was abolished by exposing sperm cells to cAMP. The high-affinity efflux pump for cAMP, MRP4 was expressed in bovine spermatozoa and localized to the midpiece of the tail as previously reported for soluble adenylyl cyclase and A1 adenosine receptor. Additionally, blockade of A1 adenosine receptor abolished not only bicarbonate-induced sperm capacitation but also that stimulated by cAMP. Present findings strongly support that cAMP efflux, presumably through MRP4, and the activation of A1 adenosine receptor regulate some events associated with bicarbonate-induced sperm capacitation, and further suggest a paracrine and/or autocrine role for cAMP.


Asunto(s)
AMP Cíclico/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Receptor de Adenosina A1/metabolismo , Capacitación Espermática/efectos de los fármacos , Espermatozoides/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Adenosina/química , Antagonistas del Receptor de Adenosina A1/farmacología , Inhibidores de Adenilato Ciclasa , Animales , Bicarbonatos/farmacología , Transporte Biológico , Bovinos , Humanos , Masculino , Inhibidores de Fosfodiesterasa/farmacología , Probenecid/farmacología , Motilidad Espermática , Xantinas/farmacología
10.
PLoS One ; 8(8): e72521, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977311

RESUMEN

Mammalian oviduct acts as a reservoir for spermatozoa and provides an environment in which they may compete for the opportunity to fertilize the oocyte. Whilst in the oviduct spermatozoa undergo capacitation essential for fertilization. Sperm-oviduct interaction is essential for sperm capacitation and is a tightly regulated process influenced by the local microenvironment. Previously we reported that the endocannabinoid anandamide (AEA) regulates sperm release from epithelial oviductal cells by promoting sperm capacitation. The aims of this work were to measure the AEA content and to characterize the main AEA metabolic pathway in the bovine oviduct and determine how these change through the oestrous cycle. In this study, the levels of AEA and two other N-acylethanolamines, N-oleoylethanolamine and N-palmitoylethanolamine, were measured in bovine oviduct collected during different stages of oestrous cycle by ultra high performance liquid chromatography tandem mass spectrometry. Results indicated that intracellular oviductal epithelial levels of all three N-acylethanolamines fluctuate during oestrous cycle. Anandamide from oviductal fluid also varied during oestrous cycle, with the highest values detected during the periovulatory period. Endocannabinoid levels from ipsilateral oviduct to ovulation were higher than those detected in the contralateral one, suggesting that levels of oviductal AEA may be regulated by ovarian hormones. The expression and localization of N-acylethanolamines metabolizing enzymes in bovine oviduct were also determined by RT-PCR, Western blot, and immunohistochemistry but no change was found during the oestrous cycle. Furthermore, nanomolar levels of AEA were detected in follicular fluids, suggesting that during ovulation the mature follicle may contribute to oviductal AEA levels to create an endocannabinoid gradient conducive to the regulation of sperm function for successful fertilization.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Ciclo Estral , Oviductos/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Amidohidrolasas/metabolismo , Animales , Líquidos Corporales/metabolismo , Bovinos , Células Epiteliales/metabolismo , Etanolaminas/metabolismo , Femenino , Regulación de la Expresión Génica , Espacio Intracelular/metabolismo , Folículo Ovárico/metabolismo , Oviductos/citología , Fosfatidiletanolaminas/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
PLoS One ; 7(9): e46059, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029388

RESUMEN

Bioactive lipid molecules as lysophosphatidic acid (LPA), prostaglandins (PG) and endocannabinoids are important mediators of embryo implantation. Based on previous published data we became interested in studying the interaction between these three groups of lipid derivatives in the rat uterus during the window of implantation. Thus, we adopted a pharmacological approach in vitro using LPA, DGPP (a selective antagonist of LPA3, an LPA receptor), endocannabinoids' receptor selective antagonists (AM251 and AM630) and non selective (indomethacin) and selective (NS-398) inhibitors of cyclooxygenase-1 and 2 enzymes. Cyclooxygenase isoforms participate in prostaglandins' synthesis. The incubation of the uterus from rats pregnant on day 5 of gestation (implantation window) with LPA augmented the activity and the expression of fatty acid amide hydrolase, the main enzyme involved in the degradation of endocannabinoids in the rodent uteri, suggesting that LPA decreased endocannabinoids' levels during embryo implantation. It has been reported that high endocannabinoids are deleterious for implantation. Also, LPA increased PGE2 production and cyclooxygenase-2 expression. The incubation of LPA with indomethacin or NS-398 reversed the increment in PGE2 production, suggesting that cyclooxygenase-2 was the isoform involved in LPA effect. PGs are important mediators of decidualization and vascularization at the implantation sites. All these effects were mediated by LPA3, as the incubation with DGPP completely reversed LPA stimulatory actions. Besides, we also observed that endocannabinoids mediated the stimulatory effect of LPA on cyclooxygenase-2 derived PGE2 production, as the incubation of LPA with AM251 or AM630 completely reversed LPA effect. Also, LPA augmented via LPA3 decidualization and vascularization markers. Overall, the results presented here demonstrate the participation of LPA3 in the process of implantation through the interaction with other groups of lipid molecules, prostaglandins and endocannabinoids, which prepare the uterine milieu for embryo invasion during the window of implantation.


Asunto(s)
Implantación del Embrión , Endocannabinoides/metabolismo , Lisofosfolípidos/metabolismo , Prostaglandinas/metabolismo , Amidohidrolasas/metabolismo , Animales , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Femenino , Hidrolasas Diéster Fosfóricas/análisis , Hidrolasas Diéster Fosfóricas/metabolismo , Embarazo , Ratas , Ratas Wistar , Receptores del Ácido Lisofosfatídico/análisis , Receptores del Ácido Lisofosfatídico/metabolismo , Útero/irrigación sanguínea , Útero/metabolismo
12.
PLoS One ; 7(2): e30671, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363468

RESUMEN

Mammalian spermatozoa are not able to fertilize an egg immediately upon ejaculation. They acquire this ability during their transit through the female genital tract in a process known as capacitation. The mammalian oviduct acts as a functional sperm reservoir providing a suitable environment that allows the maintenance of sperm fertilization competence until ovulation occurs. After ovulation, spermatozoa are gradually released from the oviductal reservoir in the caudal isthmus and ascend to the site of fertilization. Capacitating-related changes in sperm plasma membrane seem to be responsible for sperm release from oviductal epithelium. Anandamide is a lipid mediator that participates in the regulation of several female and male reproductive functions. Previously we have demonstrated that anandamide was capable to release spermatozoa from oviductal epithelia by induction of sperm capacitation in bovines. In the present work we studied whether anandamide might exert its effect by activating the nitric oxide (NO) pathway since this molecule has been described as a capacitating agent in spermatozoa from different species. First, we demonstrated that 1 µM NOC-18, a NO donor, and 10 mM L-Arginine, NO synthase substrate, induced the release of spermatozoa from the oviductal epithelia. Then, we observed that the anandamide effect on sperm oviduct interaction was reversed by the addition of 1 µM L-NAME, a NO synthase inhibitor, or 30 µg/ml Hemoglobin, a NO scavenger. We also demonstrated that the induction of bull sperm capacitation by nanomolar concentrations of R(+)-methanandamide or anandamide was inhibited by adding L-NAME or Hemoglobin. To study whether anandamide is able to produce NO, we measured this compound in both sperm and oviductal cells. We observed that anandamide increased the levels of NO in spermatozoa, but not in oviductal cells. These findings suggest that anandamide regulates the sperm release from oviductal epithelia probably by activating the NO pathway during sperm capacitation.


Asunto(s)
Ácidos Araquidónicos/farmacología , Trompas Uterinas/citología , Trompas Uterinas/metabolismo , Óxido Nítrico/metabolismo , Alcamidas Poliinsaturadas/farmacología , Transducción de Señal/efectos de los fármacos , Espermatozoides/citología , Animales , Bovinos , Comunicación Celular/efectos de los fármacos , Endocannabinoides , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Trompas Uterinas/efectos de los fármacos , Femenino , Hemoglobinas/farmacología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Receptor Cannabinoide CB1/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/enzimología , Canales Catiónicos TRPV/metabolismo
13.
PLoS One ; 6(2): e16993, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21347292

RESUMEN

Anandamide (AEA), a major endocannabinoid, binds to cannabinoid and vanilloid receptors (CB1, CB2 and TRPV1) and affects many reproductive functions. Nanomolar levels of anandamide are found in reproductive fluids including mid-cycle oviductal fluid. Previously, we found that R(+)-methanandamide, an anandamide analogue, induces sperm releasing from bovine oviductal epithelium and the CB1 antagonist, SR141716A, reversed this effect. Since sperm detachment may be due to surface remodeling brought about by capacitation, the aim of this paper was to investigate whether anandamide at physiological concentrations could act as a capacitating agent in bull spermatozoa. We demonstrated that at nanomolar concentrations R(+)-methanandamide or anandamide induced bull sperm capacitation, whereas SR141716A and capsazepine (a TRPV1 antagonist) inhibited this induction. Previous studies indicate that mammalian spermatozoa possess the enzymatic machinery to produce and degrade their own AEA via the actions of the AEA-synthesizing phospholipase D and the fatty acid amide hydrolase (FAAH) respectively. Our results indicated that, URB597, a potent inhibitor of the FAAH, produced effects on bovine sperm capacitation similar to those elicited by exogenous AEA suggesting that this process is normally regulated by an endogenous tone. We also investigated whether anandamide is involved in bovine heparin-capacitated spermatozoa, since heparin is a known capacitating agent of bovine sperm. When the spermatozoa were incubated in the presence of R(+)-methanandamide and heparin, the percentage of capacitated spermatozoa was similar to that in the presence of R(+)-methanandamide alone. The pre-incubation with CB1 or TRPV1 antagonists inhibited heparin-induced sperm capacitation; moreover the activity of FAAH was 30% lower in heparin-capacitated spermatozoa as compared to control conditions. This suggests that heparin may increase endogenous anandamide levels. Our findings indicate that anandamide induces sperm capacitation through the activation of CB1 and TRPV1 receptors and could be involved in the same molecular pathway as heparin in bovines.


Asunto(s)
Ácidos Araquidónicos/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Alcamidas Poliinsaturadas/farmacología , Receptor Cannabinoide CB1/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Canales Catiónicos TRPV/metabolismo , Reacción Acrosómica/efectos de los fármacos , Animales , Bovinos , Relación Dosis-Respuesta a Droga , Endocannabinoides , Regulación de la Expresión Génica/efectos de los fármacos , Heparina/farmacología , Masculino , Transporte de Proteínas/efectos de los fármacos , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo , Espermatozoides/citología , Canales Catiónicos TRPV/antagonistas & inhibidores
14.
Reproduction ; 137(3): 403-14, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19042982

RESUMEN

Anandamide binds to cannabinoid receptors and plays several central and peripheral functions. The aim of this work was to study the possible role for this endocannabinoid in controlling sperm-oviduct interaction in mammals. We observed that bull sperm and bovine oviductal epithelial cells express cannabinoid receptors, CB1 and CB2, and fatty acid amide hydrolase, the enzyme that controls intracellular anandamide levels. A quantitative assay to determine whether anandamide was involved in bovine sperm-oviduct interaction was developed. R(+)-methanandamide, a non-hydrolysable anandamide analog, inhibited sperm binding to and induced sperm release from oviductal epithelia. Selective CB1 antagonists (SR141716A or AM251) completely blocked R(+)-methanandamide effects. However, SR144528, a selective CB2 antagonist, did not exert any effect, indicating that only CB1 was involved in R(+)-methanandamide effect. This effect was not caused by inhibition of the sperm progressive motility or by induction of the acrosome reaction. Overall, our findings indicate for the first time that the endocannabinoid system is present in bovine sperm and oviductal epithelium and that anandamide modulates the sperm-oviduct interaction, by inhibition of sperm binding and induction of sperm release from oviductal epithelial cells, probably by activating CB1 receptors.


Asunto(s)
Ácidos Araquidónicos/fisiología , Trompas Uterinas/metabolismo , Interacciones Espermatozoide-Óvulo/fisiología , Espermatozoides/metabolismo , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Benzamidas/farmacología , Western Blotting/métodos , Canfanos/farmacología , Carbamatos/farmacología , Bovinos , Endocannabinoides , Epitelio/metabolismo , Femenino , Inmunohistoquímica , Masculino , Microscopía Fluorescente , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo , Motilidad Espermática/efectos de los fármacos , Interacciones Espermatozoide-Óvulo/efectos de los fármacos , Espermatozoides/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...