Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 981602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204061

RESUMEN

Alginate (alginic acid) is a linear polysaccharide, wherein (1→4)-linked ß-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1→4) glycosidic linkages between the monomers by a ß-elimination mechanism, to yield unsaturated 4-deoxy-L-erythro-hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L-erythro configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers. In this study, two alginate lyase genes, designated alyRm3 and alyRm4, from the marine thermophilic bacterium Rhodothermus marinus (strain MAT378), were cloned and expressed in Escherichia coli. The recombinant enzymes were characterized, and their substrate specificity and product structures determined. AlyRm3 (PL39) and AlyRm4 (PL17) are among the most thermophilic and thermostable alginate lyases described to date with temperature optimum of activity at ∼75 and 81°C, respectively. The pH optimum of activity of AlyRm3 is ∼5.5 and AlyRm4 at pH 6.5. Detailed NMR analysis of the incubation products demonstrated that AlyRm3 is an endolytic lyase, while AlyRm4 is an exolytic lyase, cleaving monomers from the non-reducing end of oligo/poly-alginates.

2.
J Agric Food Chem ; 69(34): 9859-9868, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34427087

RESUMEN

Starch-acting α-glucanotransferase enzymes are of great interest for applications in the food industry. In previous work, we have characterized various 4,6- and 4,3-α-glucanotransferases of the glycosyl hydrolase (GH) family 70 (subfamily GtfB), synthesizing linear or branched α-glucans. Thus far, GtfB enzymes have only been identified in mesophilic Lactobacilli. Database searches showed that related GtfC enzymes occur in Gram-positive bacteria of the genera Exiguobacterium, Bacillus, and Geobacillus, adapted to growth at more extreme temperatures. Here, we report characteristics of the Geobacillus sp. 12AMOR1 GtfC enzyme, with an optimal reaction temperature of 60 °C and a melting temperature of 68 °C, allowing starch conversions at relatively high temperatures. This thermostable 4,6-α-glucanotransferase has a novel product specificity, cleaving off predominantly maltose units from amylose, attaching them with an (α1 → 6)-linkage to acceptor substrates. In fact, this GtfC represents a novel maltogenic α-amylase. Detailed structural characterization of its starch-derived α-glucan products revealed that it yielded a unique polymer with alternating (α1 → 6)/(α1 → 4)-linked glucose units but without branches. Notably, this Geobacillus sp. 12AMOR1 GtfC enzyme showed clear antistaling effects in bread bakery products.


Asunto(s)
Geobacillus , Sistema de la Enzima Desramificadora del Glucógeno , Pan , Geobacillus/genética , Glucanos , Sistema de la Enzima Desramificadora del Glucógeno/genética
3.
Food Chem ; 272: 653-662, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30309594

RESUMEN

The adverse health effects of sucrose overconsumption, typical for diets in developed countries, necessitate use of low-calorie sweeteners. Following approval by the European Commission (2011), steviol glycosides are increasingly used as high-intensity sweeteners in food. Stevioside is the most prevalent steviol glycoside in Stevia rebaudiana plant leaves, but it has found limited applications in food products due to its lingering bitterness. Enzymatic glucosylation is a strategy to reduce stevioside bitterness, but reported glucosylation reactions suffer from low productivities. Here we present the optimized and efficient α-glucosylation of stevioside using the mutant glucansucrase Gtf180-ΔN-Q1140E and sucrose as donor substrate. Structures of novel products were elucidated by NMR spectroscopy, mass spectrometry and methylation analysis; stevioside was mainly glucosylated at the steviol C-19 glucosyl moiety. Sensory analysis of the α-glucosylated stevioside products by a trained panel revealed a significant reduction in bitterness compared to stevioside, resulting in significant improvement of edulcorant/organoleptic properties.


Asunto(s)
Proteínas Bacterianas/metabolismo , Diterpenos de Tipo Kaurano/metabolismo , Glucósidos/metabolismo , Glicosiltransferasas/metabolismo , Gusto/fisiología , Proteínas Bacterianas/genética , Diterpenos de Tipo Kaurano/análisis , Glucósidos/análisis , Glicosilación , Glicosiltransferasas/genética , Humanos , Isomerismo , Lactobacillus/enzimología , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Mutagénesis , Hojas de la Planta/metabolismo , Stevia/metabolismo , Sacarosa/química , Sacarosa/metabolismo , Edulcorantes/análisis , Edulcorantes/metabolismo
4.
Methods Mol Biol ; 1887: 67-84, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30506250

RESUMEN

Production of exopolysaccharides by lactic acid bacteria is a common phenomenon. Structural information of these widely diverse biopolymers is rendered by the monosaccharide composition, the anomeric configurations, the type of glycosidic linkages, the presence of repeating units and noncarbohydrate substituents, and finally the presentation of a chemical molecular structure or composite model. The detailed structural analysis of polysaccharides is a time-consuming pursuit, including the use of different techniques, such as chemical degradation methods (e.g., hydrolysis), separation methods (e.g., SEC-chromatography and HPLC/HPAEC), and identification methods (e.g., GLC-EIMS and 1H/13C NMR spectroscopy). In this chapter, some analytical methods are described and demonstrated for two different exopolysaccharides from lactic acid bacteria.


Asunto(s)
Lactobacillales/química , Estructura Molecular , Polisacáridos Bacterianos/química , Acetilación , Glicósidos , Hidrólisis , Lactobacillales/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Monosacáridos/química , Oxidación-Reducción , Polisacáridos Bacterianos/metabolismo
5.
Sci Rep ; 8(1): 1516, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367749

RESUMEN

Steviol glycosides from the leaves of the plant Stevia rebaudiana are high-potency natural sweeteners but suffer from a lingering bitterness. The Lactobacillus reuteri 180 wild-type glucansucrase Gtf180-ΔN, and in particular its Q1140E-mutant, efficiently α-glucosylated rebaudioside A (RebA), using sucrose as donor substrate. Structural analysis of the products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that both enzymes exclusively glucosylate the Glc(ß1→C-19 residue of RebA, with the initial formation of an (α1→6) linkage. Docking of RebA in the active site of the enzyme revealed that only the steviol C-19 ß-D-glucosyl moiety is available for glucosylation. Response surface methodology was applied to optimize the Gtf180-ΔN-Q1140E-catalyzed α-glucosylation of RebA, resulting in a highly productive process with a RebA conversion of 95% and a production of 115 g/L α-glucosylated products within 3 h. Development of a fed-batch reaction allowed further suppression of α-glucan synthesis which improved the product yield to 270 g/L. Sensory analysis by a trained panel revealed that glucosylated RebA products show a significant reduction in bitterness, resulting in a superior taste profile compared to RebA. The Gtf180-ΔN-Q1140E glucansucrase mutant enzyme thus is an efficient biocatalyst for generating α-glucosylated RebA variants with improved edulcorant/organoleptic properties.


Asunto(s)
Diterpenos de Tipo Kaurano/metabolismo , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Edulcorantes/metabolismo , Diterpenos de Tipo Kaurano/química , Espectroscopía de Resonancia Magnética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sacarosa/metabolismo , Edulcorantes/química , Gusto
6.
Carbohydr Res ; 440-441: 51-62, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28231561

RESUMEN

The wild-type Gtf180-ΔN glucansucrase enzyme from Lactobacillus reuteri 180 was found to catalyze the α-glucosylation of the steviol glycoside rebaudioside A, using sucrose as glucosyl donor in a transglucosylation process. Structural analysis of the formed products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that rebaudioside A is specifically α-d-glucosylated at the steviol C-19 ß-d-glucosyl moiety (55% conversion). The main product is a mono-(α1 â†’ 6)-glucosylated derivative (RebA-G1). A series of minor products, up to the incorporation of eight glucose residues, comprise elongations of RebA-G1 with mainly alternating (α1 â†’ 3)- and (α1 â†’ 6)-linked glucopyranose residues. These studies were carried out in the context of a program directed to the improvement of the taste of steviol glycosides via enzymatic modification of their naturally occurring carbohydrate moieties.


Asunto(s)
Proteínas Bacterianas/química , Diterpenos de Tipo Kaurano/química , Glucosa/química , Glicosiltransferasas/química , Limosilactobacillus reuteri/química , Sacarosa/química , Proteínas Bacterianas/aislamiento & purificación , Conformación de Carbohidratos , Catálisis , Glicosilación , Glicosiltransferasas/aislamiento & purificación , Limosilactobacillus reuteri/enzimología , Espectroscopía de Resonancia Magnética , Metilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Stevia/química
7.
Sci Rep ; 7: 39761, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28059108

RESUMEN

Lactic acid bacteria possess a diversity of glucansucrase (GS) enzymes that belong to glycoside hydrolase family 70 (GH70) and convert sucrose into α-glucan polysaccharides with (α1 → 2)-, (α1 → 3)-, (α1 → 4)- and/or (α1 → 6)-glycosidic bonds. In recent years 3 novel subfamilies of GH70 enzymes, inactive on sucrose but using maltodextrins/starch as substrates, have been established (e.g. GtfB of Lactobacillus reuteri 121). Compared to the broad linkage specificity found in GSs, all GH70 starch-acting enzymes characterized so far possess 4,6-α-glucanotransferase activity, cleaving (α1 → 4)-linkages and synthesizing new (α1 → 6)-linkages. In this work a gene encoding a putative GH70 family enzyme was identified in the genome of Lactobacillus fermentum NCC 2970, displaying high sequence identity with L. reuteri 121 GtfB 4,6-α-glucanotransferase, but also with unique variations in some substrate-binding residues of GSs. Characterization of this L. fermentum GtfB and its products revealed that it acts as a 4,3-α-glucanotransferase, converting amylose into a new type of α-glucan with alternating (α1 → 3)/(α 1 → 4)-linkages and with (α1 → 3,4) branching points. The discovery of this novel reaction specificity in GH70 family and clan GH-H expands the range of α-glucans that can be synthesized and allows the identification of key positions governing the linkage specificity within the active site of the GtfB-like GH70 subfamily of enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Limosilactobacillus fermentum/enzimología , Limosilactobacillus reuteri/enzimología , Proteínas Bacterianas/química , Evolución Molecular , Glucanos/química , Glucanos/metabolismo , Glucosiltransferasas/química , Sistema de la Enzima Desramificadora del Glucógeno/química , Glicósidos/química , Glicósidos/metabolismo , Filogenia , Polisacáridos/química , Polisacáridos/metabolismo , Especificidad por Sustrato , Sacarosa/química , Sacarosa/metabolismo
8.
Food Chem ; 217: 81-90, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27664611

RESUMEN

Exopolysaccharides produced by lactic acid bacteria are extensively used for food applications. Glucansucrase enzymes of lactic acid bacteria use sucrose to catalyze the synthesis of α-glucans with different linkage compositions, size and physico-chemical properties. Crystallographic studies of GTF180-ΔN show that at the acceptor binding sites +1 and +2, residue W1065 provides stacking interactions to the glucosyl moiety. However, the detailed functional roles of W1065 have not been elucidated. We performed random mutagenesis targeting residue W1065 of GTF180-ΔN, resulting in the generation of 10 mutant enzymes that were characterized regarding activity and product specificity. Characterization of mutant enzymes showed that residue W1065 is critical for the activity of GTF180-ΔN. Using sucrose, and sucrose (donor) plus maltose (acceptor) as substrates, the mutant enzymes synthesized polysaccharides and oligosaccharides with changed linkage composition. The stacking interaction of an aromatic residue at position 1065 is essential for polysaccharide synthesis.


Asunto(s)
Ligamiento Genético/genética , Glicosiltransferasas/genética , Mutación/genética , Oligosacáridos/genética , Polisacáridos/genética , Glicosiltransferasas/química , Limosilactobacillus reuteri/enzimología , Limosilactobacillus reuteri/genética , Maltosa/biosíntesis , Maltosa/química , Maltosa/genética , Oligosacáridos/biosíntesis , Oligosacáridos/química , Polisacáridos/biosíntesis , Polisacáridos/química , Estructura Secundaria de Proteína , Sacarosa/química , Sacarosa/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-27816105

RESUMEN

Stevia glycosides, extracted from the leaves of the plant Stevia rebaudiana Bertoni, display an amazing high degree of sweetness. As processed plant products, they are considered as excellent bio-alternatives for sucrose and artificial sweeteners. Being noncaloric and having beneficial properties for human health, they are the subject of an increasing number of studies for applications in food and pharmacy. However, one of the main obstacles for the successful commercialization of Stevia sweeteners, especially in food, is their slight bitter aftertaste and astringency. These undesirable properties may be reduced or eliminated by modifying the carbohydrate moieties of the steviol glycosides. A promising procedure is to subject steviol glycosides to enzymatic glycosylation, thereby introducing additional monosaccharide residues into the molecules. Depending on the number and positions of the monosaccharide units, the taste quality and sweetness potency of the compounds will vary. Many studies have been performed already, and this review summarizes the structures of native steviol glycosides and the recent data of modifications of the carbohydrate moieties that have been published to provide an overview of the current progress.


Asunto(s)
Carbohidratos/química , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/metabolismo , Glucosiltransferasas/metabolismo , Glicósido Hidrolasas/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Humanos
10.
Sci Rep ; 6: 35261, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27748434

RESUMEN

The glucansucrase GTFA of Lactobacillus reuteri 121 produces an α-glucan (reuteran) with a large amount of alternating (α1 → 4) and (α1 → 6) linkages. The mechanism of alternating linkage formation by this reuteransucrase has remained unclear. GTFO of the probiotic bacterium Lactobacillus reuteri ATCC 55730 shows a high sequence similarity (80%) with GTFA of L. reuteri 121; it also synthesizes an α-glucan with (α1 → 4) and (α1 → 6) linkages, but with a clearly different ratio compared to GTFA. In the present study, we show that residues in loop977 (970DGKGYKGA977) and helix α4 (1083VSLKGA1088) are main determinants for the linkage specificity difference between GTFO and GTFA, and hence are important for the synthesis of alternating (α1 → 4) and (α1 → 6) linkages in GTFA. More remote acceptor substrate binding sites (i.e.+3) are also involved in the determination of alternating linkage synthesis, as shown by structural analysis of the oligosaccharides produced using panose and maltotriose as acceptor substrate. Our data show that the amino acid residues at acceptor substrate binding sites (+1, +2, +3…) together form a distinct physicochemical micro-environment that determines the alternating (α1 → 4) and (α1 → 6) linkages synthesis in GTFA.


Asunto(s)
Glicosiltransferasas/química , Limosilactobacillus reuteri/enzimología , Oligosacáridos/química , Proteínas Bacterianas/química , Sitios de Unión , Glucanos/química , Hidrólisis , Espectroscopía de Resonancia Magnética , Maltosa/química , Mutagénesis Sitio-Dirigida , Mutación , Polisacáridos/química , Probióticos , Especificidad por Sustrato , Sacarosa/química
11.
Glycobiology ; 26(11): 1157-1170, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27550196

RESUMEN

Recently, we have shown that glycoside hydrolases enzymes of family GH17 from proteobacteria (genera Pseudomonas, Azotobacter) catalyze elongation transfer reactions with laminari-oligosaccharides generating (ß1→3) linkages preferably and to a lesser extent (ß1→6) or (ß1→4) linkages. In the present study, the cloning and characterization of the gene encoding the structurally very similar GH17 domain of the NdvB enzyme from Bradyrhizobium diazoefficiens, designated Glt20, as well as its catalytic properties are described. The Glt20 enzyme was strikingly different from the previously investigated bacterial GH17 enzymes, both regarding substrate specificity and product formation. The Azotobacter and Pseudomonas enzymes cleaved the donor laminari-oligosaccharide substrates three or four moieties from the non-reducing end, generating linear oligosaccharides. In contrast, the Glt20 enzyme cleaved donor laminari-oligosaccharide substrates two glucose moieties from the reducing end, releasing laminaribiose and transferring the remainder to laminari-oligosaccharide acceptor substrates creating only (ß1→3)(ß1→6) branching points. This enables Glt20 to transfer larger oligosaccharide chains than the other type of bacterial enzymes previously described, and helps explain the biologically significant formation of cyclic ß-glucans in B. diazoefficiens.


Asunto(s)
Bradyrhizobium/enzimología , Oligosacáridos/metabolismo , beta-Glucosidasa/metabolismo , Biocatálisis , Proteínas Recombinantes/metabolismo , beta-Glucosidasa/genética
12.
Carbohydr Polym ; 151: 29-39, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27474540

RESUMEN

Lactic acid bacteria (LAB) produce exopolysaccharides (EPS) that are important for biofilm formation in the mammalian oral cavity and gastrointestinal tract. Sucrose is a well-known substrate for homo-EPS formation by Lactobacillus reuteri glucansucrases (GS). Starch is the main fermentable carbohydrate in the human diet, and often consumed simultaneously with sucrose. Recently we have characterized L. reuteri strains that also possess 4,6-α-glucanotransferases (4,6-α-GTases) that act on starch yielding isomalto-/malto-polysaccharides. In this study we have characterized the EPS formed by L. reuteri 35-5 cells and enzymes from sucrose plus starch. The data show that both in vivo and in vitro the L. reuteri 35-5 GS and 4,6-α-GTase enzymes, incubated with sucrose plus starch, cross-react and contribute to synthesis of the final hybrid EPS products. This may have strong effects on the EPS functional properties, influence biofilm formation, and affect the relationship between dietary intake of sucrose and starch, and dental caries formation.


Asunto(s)
Biopolímeros/biosíntesis , Limosilactobacillus reuteri/metabolismo , Polisacáridos/biosíntesis , Almidón/metabolismo , Sacarosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/genética
13.
J Agric Food Chem ; 64(2): 433-42, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26688101

RESUMEN

α-Glucans produced by glucansucrase enzymes of lactic acid bacteria attract strong attention as novel ingredients and functional biopolymers in the food industry. In the present study, α-helix 4 amino acid residues D1085, R1088, and N1089 of glucansucrase GTF180 of Lactobacillus reuteri 180 were targeted for mutagenesis both jointly and separately. Analysis of the mutational effects on enzyme function revealed that all D1085 and R1088 mutants catalyzed the synthesis of hyperbranched α-glucans with 15-22% branching (α1→3,6) linkages, compared to 13% in the wild-type GTF180. In addition, besides native (α1→6) and (α1→3) linkages, all of the mutations introduced a small amount of (α1→4) linkages (5% at most) in the polysaccharides produced. We conclude that α-helix 4 residues, especially D1085 and R1088, constituting part of the +2 acceptor binding subsite, are important determinants for the linkage specificity. The new hyperbranched α-glucans provide very interesting structural diversities and may find applications in the food industry.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucanos/biosíntesis , Glucanos/química , Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Sacarosa/metabolismo , Proteínas Bacterianas/genética , Glicosiltransferasas/genética , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/metabolismo , Estructura Molecular , Mutagénesis , Mutación
14.
J Biol Chem ; 290(50): 30131-41, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26507662

RESUMEN

α-Glucans produced by glucansucrase enzymes hold strong potential for industrial applications. The exact determinants of the linkage specificity of glucansucrase enzymes have remained largely unknown, even with the recent elucidation of glucansucrase crystal structures. Guided by the crystal structure of glucansucrase GTF180-ΔN from Lactobacillus reuteri 180 in complex with the acceptor substrate maltose, we identified several residues (Asp-1028 and Asn-1029 from domain A, as well as Leu-938, Ala-978, and Leu-981 from domain B) near subsite +1 that may be critical for linkage specificity determination, and we investigated these by random site-directed mutagenesis. First, mutants of Ala-978 (to Leu, Pro, Phe, or Tyr) and Asp-1028 (to Tyr or Trp) with larger side chains showed reduced degrees of branching, likely due to the steric hindrance by these bulky residues. Second, Leu-938 mutants (except L938F) and Asp-1028 mutants showed altered linkage specificity, mostly with increased (α1 → 6) linkage synthesis. Third, mutation of Leu-981 and Asn-1029 significantly affected the transglycosylation reaction, indicating their essential roles in acceptor substrate binding. In conclusion, glucansucrase product specificity is determined by an interplay of domain A and B residues surrounding the acceptor substrate binding groove. Residues surrounding the +1 subsite thus are critical for activity and specificity of the GTF180 enzyme and play different roles in the enzyme functions. This study provides novel insights into the structure-function relationships of glucansucrase enzymes and clearly shows the potential of enzyme engineering to produce tailor-made α-glucans.


Asunto(s)
Aminoácidos/metabolismo , Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Secuencia de Aminoácidos , Aminoácidos/química , Dominio Catalítico , Cromatografía de Gases y Espectrometría de Masas , Glicosiltransferasas/química , Glicosiltransferasas/genética , Metilación , Datos de Secuencia Molecular , Mutagénesis , Espectroscopía de Protones por Resonancia Magnética , Homología de Secuencia de Aminoácido
15.
Carbohydr Res ; 414: 85-92, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26281004

RESUMEN

GTFA, a glucansucrase enzyme of the probiotic bacterium Lactobacillus reuteri 121, is capable of synthesizing an α-glucan polysaccharide with (1 → 4) and (1 → 6) linkages from sucrose. With respect to its biosynthesis, the present study has shown that the ratio of oligosaccharide versus polysaccharide synthesized was directly proportional to the concentration of sucrose. It appears that the size distribution of products is kinetically controlled, but the linkage distribution in the polysaccharide material is not changed. At high sucrose concentrations the sucrose isomers leucrose and trehalulose were synthesized, using the accumulated fructose as acceptor, together with 4'- and 6'-α-D-glucosyl-leucrose and 6'-α-D-glucosyl-trehalulose. The finding of an additional branched hexasaccharide demonstrates that the enzyme is able to introduce branch-points already in relatively short oligosaccharides.


Asunto(s)
Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Polisacáridos/metabolismo , Sacarosa/metabolismo , Proteínas Bacterianas/metabolismo , Cinética , Limosilactobacillus reuteri/metabolismo , Oligosacáridos/metabolismo
16.
Cell Rep ; 11(12): 1966-78, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26095364

RESUMEN

Sialic acids (Sias), 9-carbon-backbone sugars, are among the most complex and versatile molecules of life. As terminal residues of glycans on proteins and lipids, Sias are key elements of glycotopes of both cellular and microbial lectins and thus act as important molecular tags in cell recognition and signaling events. Their functions in such interactions can be regulated by post-synthetic modifications, the most common of which is differential Sia-O-acetylation (O-Ac-Sias). The biology of O-Ac-Sias remains mostly unexplored, largely because of limitations associated with their specific in situ detection. Here, we show that dual-function hemagglutinin-esterase envelope proteins of nidoviruses distinguish between a variety of closely related O-Ac-Sias. By using soluble forms of hemagglutinin-esterases as lectins and sialate-O-acetylesterases, we demonstrate differential expression of distinct O-Ac-sialoglycan populations in an organ-, tissue- and cell-specific fashion. Our findings indicate that programmed Sia-O-acetylation/de-O-acetylation may be critical to key aspects of cell development, homeostasis, and/or function.


Asunto(s)
Acetilesterasa/biosíntesis , Hemaglutininas Virales/genética , Ácido N-Acetilneuramínico/genética , Ácidos Siálicos/genética , Proteínas Virales de Fusión/genética , Acetilación , Acetilesterasa/genética , Animales , Regulación de la Expresión Génica , Genoma , Hemaglutininas Virales/química , Hemaglutininas Virales/metabolismo , Humanos , Lípidos/química , Lípidos/genética , Mamíferos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Nidovirales/química , Proteínas/química , Proteínas/genética , Ácidos Siálicos/química , Especificidad de la Especie , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo
17.
J Agric Food Chem ; 63(25): 5976-84, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26044147

RESUMEN

Decoration of prebiotic galacto-oligosaccharides (GOS) with sialic acid yields mixtures of GOS and sialylated GOS (Sia-GOS), novel products that are expected to have both prebiotic and antiadhesive functionalities. The recombinantly produced trans-sialidase enzyme from Trypanosoma cruzi (TcTS), an enzyme with the ability to transfer (α2-3)-linked sialic acid from sialogalactoglycans to asialogalactoglycans, was employed to catalyze this sialylation. As sialic acid acceptor substrates, Vivinal GOS and derived fractions of specific degree of polymerization were taken. As sialic acid donor substrates, bovine κ-casein-derived glycomacropeptide [>99% N-acetylneuraminic acid (Neu5Ac); <1% N-glycolylneuraminic acid (Neu5Gc)] and bovine blood plasma glycoprotein mixture (45% Neu5Ac; 55% Neu5Gc) were selected, yielding potential food and feed products, respectively. High-pH anion-exchange chromatography, matrix-assisted laser-desorption ionization time-of-flight mass spectrometry, and nuclear magnetic resonance spectroscopy were used for product analysis.


Asunto(s)
Caseínas/química , Glicoconjugados/química , Glicopéptidos/química , Glicoproteínas/química , Ácido N-Acetilneuramínico/química , Neuraminidasa/química , Oligosacáridos/química , Prebióticos/análisis , Proteínas Protozoarias/química , Animales , Bovinos , Color , Glicoproteínas/genética , Glicoproteínas/metabolismo , Estructura Molecular , Neuraminidasa/genética , Neuraminidasa/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/enzimología
18.
Carbohydr Res ; 411: 49-55, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25974853

RESUMEN

Different fungi, including the genera Neosartorya, Byssochlamys and Talaromyces, produce (asco)spores that survive pasteurization treatments and are regarded as the most stress-resistant eukaryotic cells. Here, the NMR analysis of a series of trehalose-based oligosaccharides, being compatible solutes that are accumulated to high levels in ascospores of the fungus Neosartorya fischeri, is presented. These oligosaccharides consist of an α,α-trehalose backbone, extended with one [α-D-Glcp-(1 → 6)-α-D-Glcp-(1 ↔ 1)-α-D-Glcp; isobemisiose], two [α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp-(1 ↔ 1)-α-D-Glcp] or three [α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp-(1 ↔ 1)-α-D-Glcp] glucose units. The tetra- and pentasaccharide, dubbed neosartose and fischerose, respectively, have not been reported before to occur in nature.


Asunto(s)
Aspergillus/química , Polisacáridos Fúngicos/química , Esporas Fúngicas/química , Trehalosa/química , Aspergillus/fisiología , Conformación de Carbohidratos , Secuencia de Carbohidratos , Cromatografía en Gel , Polisacáridos Fúngicos/aislamiento & purificación , Datos de Secuencia Molecular , Trehalosa/aislamiento & purificación
19.
Appl Microbiol Biotechnol ; 99(14): 5885-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25586581

RESUMEN

Glucansucrases are exclusively found in lactic acid bacteria and synthesize a variety of α-glucans from sucrose. They are large multidomain enzymes belonging to the CAZy family 70 of glycoside hydrolase enzymes (GH70). The crystal structure of the N-terminal truncated GTF180 of Lactobacillus reuteri 180 (GTF180-ΔN) revealed that the polypeptide chain follows a U shape course to form five domains, including domains A, B, and C, which resemble those of family GH13 enzymes, and two extra and novel domains (domains IV and V), which are attached to the catalytic core. To elucidate the functional roles of domain V, we have deleted the domain V fragments from both the N- and C-terminal ends (GTF180-ΔNΔV). Truncation of domain V of GTF180-ΔN yielded a catalytically fully active enzyme but with heavily impaired polysaccharide synthesis ability. Instead, GTF180-ΔNΔV produced a large amount of oligosaccharides. Domain V is not involved in determining the linkage specificity, and the size of polysaccharide produced as the polysaccharide produced by GTF180-ΔNΔV was identical in size and structure with that of GTF180-ΔN. The data indicates that GTF180-ΔNΔV acts nonprocessively, frequently initiating synthesis of a new oligosaccharide from sucrose, instead of continuing the synthesis of a full size polysaccharide. Mutations L940E and L940F in GTF180-ΔNΔV, which are involved in the acceptor substrate binding, restored polysaccharide synthesis almost to the level of GTF180-ΔN. These results demonstrated that interactions of growing glucan chains with both domain V and acceptor substrate binding sites are important for polysaccharide synthesis.


Asunto(s)
Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Limosilactobacillus reuteri/metabolismo , Polisacáridos/biosíntesis , Glicosiltransferasas/genética , Limosilactobacillus reuteri/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Eliminación de Secuencia
20.
Glycobiology ; 24(8): 728-39, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24789815

RESUMEN

Human milk oligosaccharides (HMOs) are a major constituent of human breast milk and play an important role in reducing the risk of infections in infants. The structures of these HMOs show similarities with blood group antigens in protein glycosylation, in particular in relation to fucosylation in Lewis blood group-type epitopes, matching the maternal pattern. Previously, based on the Secretor and Lewis blood group system, four milk groups have been defined, i.e. Lewis-positive Secretors, Lewis-positive non-Secretors, Lewis-negative Secretors and Lewis-negative non-Secretors. Here, a rapid one-dimensional (1)H nuclear magnetic resonance (NMR) analysis method is presented that identifies the presence/absence of (α1-2)-, (α1-3)- and (α1-4)-linked fucose residues in HMO samples, affording the essential information to attribute different HMO samples to a specific milk group. The developed method is based on the NMR structural-reporter-group concept earlier established for glycoprotein glycans. Further evaluation of the data obtained from the analysis of 36 HMO samples shows that within each of the four milk groups the relative levels of the different fucosylation epitopes can greatly vary. The data also allow a separation of the Lewis-positive Secretor milk group into two sub-groups.


Asunto(s)
Epítopos/análisis , Antígenos del Grupo Sanguíneo de Lewis/análisis , Leche Humana/química , Oligosacáridos/química , Epítopos/química , Epítopos/inmunología , Humanos , Antígenos del Grupo Sanguíneo de Lewis/química , Antígenos del Grupo Sanguíneo de Lewis/inmunología , Espectroscopía de Resonancia Magnética , Leche Humana/inmunología , Oligosacáridos/análisis , Oligosacáridos/inmunología , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...