Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Skelet Muscle ; 8(1): 38, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30526662

RESUMEN

Following publication of the original article [1], the authors flagged that there is a discrepancy with the Availability of data and materials statement on page 12 of the article.

2.
Skelet Muscle ; 8(1): 35, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30424786

RESUMEN

BACKGROUND: In muscular dystrophy and old age, skeletal muscle repair is compromised leading to fibrosis and fatty tissue accumulation. Therefore, therapies that protect skeletal muscle or enhance repair would be valuable medical treatments. Hypoxia-inducible factors (HIFs) regulate gene transcription under conditions of low oxygen, and HIF target genes EPO and VEGF have been associated with muscle protection and repair. We tested the importance of HIF activation following skeletal muscle injury, in both a murine model and human volunteers, using prolyl hydroxylase inhibitors that stabilize and activate HIF. METHODS: Using a mouse eccentric limb injury model, we characterized the protective effects of prolyl hydroxylase inhibitor, GSK1120360A. We then extended these studies to examine the impact of EPO modulation and infiltrating immune cell populations on muscle protection. Finally, we extended this study with an experimental medicine approach using eccentric arm exercise in untrained volunteers to measure the muscle-protective effects of a clinical prolyl hydroxylase inhibitor, daprodustat. RESULTS: GSK1120360A dramatically prevented functional deficits and histological damage, while accelerating recovery after eccentric limb injury in mice. Surprisingly, this effect was independent of EPO, but required myeloid HIF1α-mediated iNOS activity. Treatment of healthy human volunteers with high-dose daprodustat reduced accumulation of circulating damage markers following eccentric arm exercise, although we did not observe any diminution of functional deficits with compound treatment. CONCLUSION: The results of these experiments highlight a novel skeletal muscle protective effect of prolyl hydroxylase inhibition via HIF-mediated expression of iNOS in macrophages. Partial recapitulation of these findings in healthy volunteers suggests elements of consistent pharmacology compared to responses in mice although there are clear differences between these two systems.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Glicina/análogos & derivados , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Contracción Muscular , Músculo Esquelético/efectos de los fármacos , Mialgia/tratamiento farmacológico , Quinolonas/uso terapéutico , Adolescente , Adulto , Animales , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Glicina/farmacología , Glicina/uso terapéutico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Mialgia/etiología , Quinolonas/farmacología
3.
PLoS One ; 10(8): e0134927, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26287487

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.


Asunto(s)
ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Dieta Occidental/efectos adversos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Condicionamiento Físico Animal/fisiología , ADP-Ribosil Ciclasa/metabolismo , Animales , ADP-Ribosa Cíclica/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , NAD/metabolismo , Oxidación-Reducción
4.
Cancer Res ; 68(7): 2366-74, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18381444

RESUMEN

Akt kinases 1, 2, and 3 are important regulators of cell survival and have been shown to be constitutively active in a variety of human tumors. GSK690693 is a novel ATP-competitive, low-nanomolar pan-Akt kinase inhibitor. It is selective for the Akt isoforms versus the majority of kinases in other families; however, it does inhibit additional members of the AGC kinase family. It causes dose-dependent reductions in the phosphorylation state of multiple proteins downstream of Akt, including GSK3 beta, PRAS40, and Forkhead. GSK690693 inhibited proliferation and induced apoptosis in a subset of tumor cells with potency consistent with intracellular inhibition of Akt kinase activity. In immune-compromised mice implanted with human BT474 breast carcinoma xenografts, a single i.p. administration of GSK690693 inhibited GSK3 beta phosphorylation in a dose- and time-dependent manner. After a single dose of GSK690693, >3 micromol/L drug concentration in BT474 tumor xenografts correlated with a sustained decrease in GSK3 beta phosphorylation. Consistent with the role of Akt in insulin signaling, treatment with GSK690693 resulted in acute and transient increases in blood glucose level. Daily administration of GSK690693 produced significant antitumor activity in mice bearing established human SKOV-3 ovarian, LNCaP prostate, and BT474 and HCC-1954 breast carcinoma xenografts. Immunohistochemical analysis of tumor xenografts after repeat dosing with GSK690693 showed reductions in phosphorylated Akt substrates in vivo. These results support further evaluation of GSK690693 as an anticancer agent.


Asunto(s)
Antineoplásicos/farmacología , Oxadiazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Antineoplásicos/farmacocinética , Femenino , Humanos , Ratones , Ratones Desnudos , Ratones SCID , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Oxadiazoles/farmacocinética , Inhibidores de Proteínas Quinasas/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Histochem Cytochem ; 53(5): 671-7, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15872060

RESUMEN

5-Hydroxytryptamine-2B receptor (5HT2BR) stimulation is known to cause fibroblast mitogenesis, and the mitogenic effect has been proposed to trigger valvular heart disease in humans. In this study, we used real-time polymerase chain reaction (TaqMan) to quantify transcript levels of 5HT2B, 5HT2C, and 5HT1B receptors and immunohistochemistry (IHC) to detect the tissue localization of these receptors in the normal heart valves of cynomolgus (CM) monkeys and Sprague-Dawley (S-D) rats. In both species, positive immunostaining was noted for 5HT1B and 5HT2B receptors in mitral, tricuspid, aortic, and pulmonary valves, and the cell types showing positive staining were interstitial cells and endothelial cells lining the valve leaflet. In CM monkeys, 5HT2CR was expressed only in the endothelial cells lining the leaflet, whereas S-D valves were negative for this receptor. IHC results were correlated with 5HT2B and 5HT1B receptor transcripts for all four valves. However, 5HT2C receptor transcripts were lower than 5HT2B or 5HT1B in all CM monkey valves, whereas 5HT2C transcripts were below the level of detection in any of the S-D rat valves. Our data showed the expression of 5HT2B, 5HT1B, and 5HT2C receptors in the normal heart valves of CM monkeys and S-D rats, and IHC and TaqMan techniques may be used to study the potential mechanism of compounds with 5HT2BR agonist activity.


Asunto(s)
Válvulas Cardíacas/metabolismo , Receptor de Serotonina 5-HT1B/metabolismo , Receptor de Serotonina 5-HT2B/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Animales , Inmunohistoquímica , Macaca fascicularis , Masculino , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT1B/genética , Receptor de Serotonina 5-HT2B/genética , Receptor de Serotonina 5-HT2C/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie
6.
Mol Pharmacol ; 61(3): 507-15, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11854430

RESUMEN

Supplemental oxygen therapy is frequently used in the treatment of pulmonary insufficiency, as is encountered in premature infants, and in patients with acute respiratory distress syndrome. However, hyperoxia causes lung damage in experimental animals and may do so in humans. Cytochrome P4501A enzymes have been implicated in hyperoxic lung injury. In this study, we investigated the mechanisms of CYP1A1 regulation by hyperoxia and tested the hypothesis that aryl hydrocarbon receptor (AHR)-dependent mechanisms contribute to induction of CYP1A1 and that modulation of CYP1A by hyperoxia may have implications for lung injury. Exposure of adult male Sprague-Dawley rats to hyperoxia for 24 to 48 h led to increased expression of pulmonary CYP1A1 enzyme, which was preceded by enhancement of the corresponding mRNA, followed by decline of induction at 60 h, when the animals displayed severe respiratory distress and lung inflammation. Similarly, hepatic CYP1A1/1A2 mRNAs were markedly induced between 24 and 48 h of hyperoxia, with induction declining by 60 h. Electrophoretic mobility shift assays (EMSA) and experiments with AHR (-/-) mice indicated that AHR-dependent mechanisms contributed to CYP1A induction. The AHR (-/-) mice were refractory to CYP1A1 induction by hyperoxia and were more sensitive to lung injury than wild-type mice. Lungs of hyperoxic rats showed increase in the expression of CYP1A1 in airway epithelial cells, type II pneumocytes, and endothelial cells. In conclusion, our results suggest that induction of CYP1A1 by hyperoxia is mediated by AHR-dependent mechanisms and that modulation of CYP1A enzymes by hyperoxia may have implications for hyperoxic lung injury.


Asunto(s)
Citocromo P-450 CYP1A1/biosíntesis , Regulación Enzimológica de la Expresión Génica , Hiperoxia/enzimología , Hígado/enzimología , Síndrome de Dificultad Respiratoria/enzimología , Animales , Southern Blotting , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/biosíntesis , Citocromo P-450 CYP1A2/genética , Modelos Animales de Enfermedad , Hiperoxia/complicaciones , Inflamación/etiología , Hígado/lesiones , Masculino , Ratones , Proteínas Nucleares/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Síndrome de Dificultad Respiratoria/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA