Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Biol Anthropol ; 182(4): 583-594, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38384356

RESUMEN

Objectives: The ongoing risk of emerging infectious disease has renewed calls for understanding the origins of zoonoses and identifying future zoonotic disease threats. Given their close phylogenetic relatedness and geographic overlap with humans, non-human primates (NHPs) have been the source of many infectious diseases throughout human evolution. NHPs harbor diverse parasites, with some infecting only a single host species while others infect species from multiple families. Materials and Methods: We applied a novel link-prediction method to predict undocumented instances of parasite sharing between humans and NHPs. Our model makes predictions based on phylogenetic distances and geographic overlap among NHPs and humans in six countries with high NHP diversity: Columbia, Brazil, Democratic Republic of Congo, Madagascar, China and Indonesia. Results: Of the 899 human parasites documented in the Global Infectious Diseases and Epidemiology Network (GIDEON) database for these countries, 12% were shared with at least one other NHP species. The link prediction model identified an additional 54 parasites that are likely to infect humans but were not reported in GIDEON. These parasites were mostly host generalists, yet their phylogenetic host breadth varied substantially. Discussion: As human activities and populations encroach on NHP habitats, opportunities for parasite sharing between human and non-human primates will continue to increase. Our study identifies specific infectious organisms to monitor in countries with high NHP diversity, while the comparative analysis of host generalism, parasite taxonomy, and transmission mode provides insights to types of parasites that represent high zoonotic risk.


Asunto(s)
Enfermedades Transmisibles Emergentes , Parásitos , Animales , Humanos , Filogenia , Primates , Zoonosis/epidemiología
2.
PLoS Negl Trop Dis ; 15(7): e0009540, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34214096

RESUMEN

BACKGROUND: The mosquito Aedes aegypti is a medically important, globally distributed vector of the viruses that cause dengue, yellow fever, chikungunya, and Zika. Although reproduction and mate choice are key components of vector population dynamics and control, our understanding of the mechanisms of sexual selection in mosquitoes remains poor. In "good genes" models of sexual selection, females use male cues as an indicator of both mate and offspring genetic quality. Recent studies in Ae. aegypti provide evidence that male wingbeats may signal aspects of offspring quality and performance during mate selection in a process known as harmonic convergence. However, the extent to which harmonic convergence may signal overall inherent quality of mates and their offspring remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: To examine this, we measured the relationship between acoustic signaling and a broad panel of parent and offspring fitness traits in two generations of field-derived Ae. aegypti originating from dengue-endemic field sites in Thailand. Our data show that in this population of mosquitoes, harmonic convergence does not signal male fertility, female fecundity, or male flight performance traits, which despite displaying robust variability in both parents and their offspring were only weakly heritable. CONCLUSIONS/SIGNIFICANCE: Together, our findings suggest that vector reproductive control programs should treat harmonic convergence as an indicator of some, but not all aspects of inherent quality, and that sexual selection likely affects Ae. aegypti in a trait-, population-, and environment-dependent manner.


Asunto(s)
Aedes/fisiología , Mosquitos Vectores/fisiología , Aedes/genética , Animales , Femenino , Masculino , Control de Mosquitos , Dinámica Poblacional , Reproducción , Conducta Sexual Animal , Tailandia
3.
J Anim Ecol ; 88(11): 1743-1754, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31325173

RESUMEN

The structure of local ecological communities is thought to be determined by a series of hierarchical abiotic and biotic filters which select for or against species based on their traits. Many human impacts, like fragmentation, serve to alter environmental conditions across a range of spatial scales and may impact trait-environment interactions. We examined the effects of environmental variation associated with habitat fragmentation of seagrass habitat measured from microhabitat to landscape scales in controlling the taxonomic and trait-based community structure of benthic fauna. We measured patterns in species abundance and biomass of seagrass epifauna and infauna sampled using sediment cores from 86 sites (across 21 meadows) in Back Sound, North Carolina, USA. We related local faunal community structure to environmental variation measured at three spatial scales (microhabitat, patch and landscape). Additionally, we tested the value of species traits in predicting species-specific responses to habitat fragmentation across scales. While univariate measures of faunal communities (i.e. total density, biomass and species richness) were positively related to microhabitat-scale seagrass biomass only, overall community structure was predicted by environmental variation at the microhabitat, patch (i.e. patch size) and landscape (i.e. number of patches, landscape seagrass area) scales. Furthermore, fourth-corner analysis revealed that species traits explained as much variation in organismal densities as species identity. For example, species with planktonic-dispersing larvae and deposit-feeding trophic modes were more abundant in contiguous, high seagrass cover landscapes while suspension feeders favoured more fragmented landscapes. We present quantitative evidence supporting hierarchal models of community assembly which predict that interactions between species traits and environmental variation across scales ultimately drive local community composition. Variable responses of individual traits to multiple environmental variables suggest that community assembly processes that act on species via traits related to dispersal, mobility and trophic mode will be altered under habitat fragmentation. Additionally, with increasing global temperatures, the tropical seagrass Halodule wrightii is predicted to replace the temperate Zostera marina as the dominate seagrass in our study region, therefore potentially favouring species with planktonic-dispersing larva and weakening the strength of environmental control on community assembly.


Asunto(s)
Ecosistema , Zosteraceae , Animales , Biodiversidad , Biota , Humanos , North Carolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...