Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; : 100791, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38797438

RESUMEN

Within a cell, proteins have distinct and highly variable half-lives. As a result, the molecular ages of proteins can range from seconds to years. How the age of a protein influences its environmental interactions is a largely unexplored area of biology. To investigate the age-selectivity of cellular pathways, we developed a methodology termed "proteome birthdating" that barcodes proteins based on their time of synthesis. We demonstrate that this approach provides accurate measurements of protein turnover kinetics from a single biological sample encoding multiple labeling time-points. As a first application of the birthdated proteome, we investigated the age distribution of the human ubiquitinome. Our results indicate that the vast majority of ubiquitinated proteins in a cell consist of newly synthesized proteins and that these young proteins constitute the bulk of the degradative flux through the proteasome. Rapidly ubiquitinated nascent proteins are enriched in cytosolic subunits of large protein complexes. Conversely, proteins destined for the secretory pathway and vesicular transport have older ubiquitinated populations. Our data also identify a smaller subset of older ubiquitinated cellular proteins that do not appear to be targeted to the proteasome for rapid degradation. Together, our data provide an age census of the human ubiquitinome and establish proteome birthdating as a robust methodology for investigating the protein age-selectivity of diverse cellular pathways.

2.
J Am Soc Mass Spectrom ; 35(3): 433-440, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38324783

RESUMEN

Post-translational oxidation of methionine residues can destabilize proteins or modify their functions. Although levels of methionine oxidation can provide important information regarding the structural integrity and regulation of proteins, their quantitation is often challenging as analytical procedures in and of themselves can artifactually oxidize methionines. Here, we develop a mass-spectrometry-based method called Methionine Oxidation by Blocking with Alkylation (MObBa) that quantifies methionine oxidation by selectively alkylating and blocking unoxidized methionines. Thus, alkylated methionines can be used as a stable proxy for unoxidized methionines. Using proof of concept experiments, we demonstrate that MObBa can be used to measure methionine oxidation levels within individual synthetic peptides and on proteome-wide scales. MObBa may provide a straightforward experimental strategy for mass spectrometric quantitation of methionine oxidation.


Asunto(s)
Metionina , Racemetionina , Metionina/química , Oxidación-Reducción , Espectrometría de Masas/métodos , Racemetionina/metabolismo , Alquilación , Proteoma/química
3.
J Cell Biol ; 223(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37966721

RESUMEN

LMNA mutations cause laminopathies that afflict the cardiovascular system and include Hutchinson-Gilford progeria syndrome. The origins of tissue specificity in these diseases are unclear as the lamin A/C proteins are broadly expressed. We show that LMNA transcript levels are not predictive of lamin A/C protein levels across tissues and use quantitative proteomics to discover that tissue context and disease mutation each influence lamin A/C protein's lifetime. Lamin A/C's lifetime is an order of magnitude longer in the aorta, heart, and fat, where laminopathy pathology is apparent, than in the liver and intestine, which are spared from the disease. Lamin A/C is especially insoluble in cardiovascular tissues, which may limit degradation and promote protein stability. Progerin is even more long lived than lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation is associated with impaired turnover of hundreds of abundant proteins in progeroid tissues. These findings identify impaired lamin A/C protein turnover as a novel feature of laminopathy syndromes.


Asunto(s)
Lamina Tipo A , Progeria , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutación , Progeria/genética , Progeria/patología , Proteómica
4.
Sci Adv ; 9(49): eadj4884, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064566

RESUMEN

Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator, particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.


Asunto(s)
Hiperoxia , Oxígeno , Animales , Ratones , Encéfalo/metabolismo , Hiperoxia/genética , Hiperoxia/metabolismo , Hipoxia/metabolismo , Pulmón/metabolismo , Oxígeno/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(33): e2303167120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552756

RESUMEN

The folding of most proteins occurs during the course of their translation while their tRNA-bound C termini are embedded in the ribosome. How the close proximity of nascent proteins to the ribosome influences their folding thermodynamics remains poorly understood. Here, we have developed a mass spectrometry-based approach for determining the stabilities of nascent polypeptide chains using methionine oxidation as a folding probe. This approach enables quantitative measurement subglobal folding stabilities of ribosome nascent chains within complex protein mixtures and extracts. To validate the methodology, we analyzed the folding thermodynamics of three model proteins (dihydrofolate reductase, chemotaxis protein Y, and DNA polymerase IV) in soluble and ribosome-bound states. The data indicate that the ribosome can significantly alter the stability of nascent polypeptides. Ribosome-induced stability modulations were highly variable among different folding domains and were dependent on localized charge distributions within nascent polypeptides. The results implicated electrostatic interactions between the ribosome surface and nascent polypeptides as the cause of ribosome-induced stability modulations. The study establishes a robust proteomic methodology for analyzing localized stabilities within ribosome-bound nascent polypeptides and sheds light on how the ribosome influences the thermodynamics of protein folding.


Asunto(s)
Biosíntesis de Proteínas , Proteómica , Ribosomas/metabolismo , Péptidos/química , Pliegue de Proteína , Proteínas/metabolismo , Espectrometría de Masas
6.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37162946

RESUMEN

Mutations to the LMNA gene cause laminopathies including Hutchinson-Gilford progeria syndrome (HGPS) that severely affect the cardiovascular system. The origins of tissue specificity in these diseases are unclear, as the A-type Lamins are abundant and broadly expressed proteins. We show that A-type Lamin protein and transcript levels are uncorrelated across tissues. As protein-transcript discordance can be caused by variations in protein lifetime, we applied quantitative proteomics to profile protein turnover rates in healthy and progeroid tissues. We discover that tissue context and disease mutation each influence A-type Lamin protein lifetime. Lamin A/C has a weeks-long lifetime in the aorta, heart, and fat, where progeroid pathology is apparent, but a days-long lifetime in the liver and gastrointestinal tract, which are spared from disease. The A-type Lamins are insoluble and densely bundled in cardiovascular tissues, which may present an energetic barrier to degradation and promote long protein lifetime. Progerin is even more long-lived than Lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation interferes broadly with protein homeostasis, as hundreds of abundant proteins turn over more slowly in progeroid tissues. These findings indicate that potential gene therapy interventions for HGPS will have significant latency and limited potency in disrupting the long-lived Progerin protein. Finally, we reveal that human disease alleles are significantly over-represented in the long-lived proteome, indicating that long protein lifetime may influence disease pathology and present a significant barrier to gene therapies for numerous human diseases.

7.
Mol Syst Biol ; 19(4): e11393, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36929723

RESUMEN

The lifespans of proteins range from minutes to years within mammalian tissues. Protein lifespan is relevant to organismal aging, as long-lived proteins accrue damage over time. It is unclear how protein lifetime is shaped by tissue context, where both cell turnover and proteolytic degradation contribute to protein turnover. We develop turnover and replication analysis by 15 N isotope labeling (TRAIL) to quantify protein and cell lifetimes with high precision and demonstrate that cell turnover, sequence-encoded features, and environmental factors modulate protein lifespan across tissues. Cell and protein turnover flux are comparable in proliferative tissues, while protein turnover outpaces cell turnover in slowly proliferative tissues. Physicochemical features such as hydrophobicity, charge, and disorder influence protein turnover in slowly proliferative tissues, but protein turnover is much less sequence-selective in highly proliferative tissues. Protein lifetimes vary nonrandomly across tissues after correcting for cell turnover. Multiprotein complexes such as the ribosome have consistent lifetimes across tissues, while mitochondria, peroxisomes, and lipid droplets have variable lifetimes. TRAIL can be used to explore how environment, aging, and disease affect tissue homeostasis.


Asunto(s)
Mitocondrias , Proteínas , Animales , Marcaje Isotópico , Proteínas/metabolismo , Mitocondrias/metabolismo , Envejecimiento , Proteómica , Mamíferos
8.
J Proteome Res ; 21(6): 1495-1509, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35584362

RESUMEN

The oxidation of methionine has emerged as an important post-translational modification of proteins. A number of studies have suggested that the oxidation of methionines in select proteins can have diverse impacts on cell physiology, ranging from detrimental effects on protein stability to functional roles in cell signaling. Despite its importance, the large-scale investigation of methionine oxidation in a complex matrix, such as the cellular proteome, has been hampered by technical limitations. We report a methodology, methionine oxidation by blocking (MobB), that allows for accurate and precise quantification of low levels of methionine oxidation typically observed in vivo. To demonstrate the utility of this methodology, we analyzed the brain tissues of young (6 m.o.) and old (20 m.o.) mice and identified over 280 novel sites for in vivo methionine oxidation. We further demonstrated that oxidation stoichiometries for specific methionine residues are highly consistent between individual animals and methionine sulfoxides are enriched in clusters of functionally related gene products including membrane and extracellular proteins. However, we did not detect significant changes in methionine oxidation in brains of old mice. Our results suggest that under normal conditions, methionine oxidation may be a biologically regulated process rather than a result of stochastic chemical damage.


Asunto(s)
Metionina , Procesamiento Proteico-Postraduccional , Animales , Encéfalo/metabolismo , Metionina/metabolismo , Ratones , Oxidación-Reducción , Proteoma/genética , Proteoma/metabolismo
9.
J Biol Chem ; 298(5): 101872, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35346688

RESUMEN

The oxidation of protein-bound methionines to form methionine sulfoxides has a broad range of biological ramifications, making it important to delineate factors that influence methionine oxidation rates within a given protein. This is especially important for biopharmaceuticals, where oxidation can lead to deactivation and degradation. Previously, neighboring residue effects and solvent accessibility have been shown to impact the susceptibility of methionine residues to oxidation. In this study, we provide proteome-wide evidence that oxidation rates of buried methionine residues are also strongly influenced by the thermodynamic folding stability of proteins. We surveyed the Escherichia coli proteome using several proteomic methodologies and globally measured oxidation rates of methionine residues in the presence and absence of tertiary structure, as well as the folding stabilities of methionine-containing domains. These data indicated that buried methionines have a wide range of protection factors against oxidation that correlate strongly with folding stabilities. Consistent with this, we show that in comparison to E. coli, the proteome of the thermophile Thermus thermophilus is significantly more stable and thus more resistant to methionine oxidation. To demonstrate the utility of this correlation, we used native methionine oxidation rates to survey the folding stabilities of E. coli and T. thermophilus proteomes at various temperatures and propose a model that relates the temperature dependence of the folding stabilities of these two species to their optimal growth temperatures. Overall, these results indicate that oxidation rates of buried methionines from the native state of proteins can be used as a metric of folding stability.


Asunto(s)
Proteoma , Proteómica , Escherichia coli/genética , Escherichia coli/metabolismo , Metionina/metabolismo , Oxidación-Reducción , Pliegue de Proteína , Proteoma/metabolismo
10.
ACS Cent Sci ; 7(5): 841-857, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34079900

RESUMEN

The plant-derived sesquiterpene lactone micheliolide was recently found to possess promising antileukemic activity, including the ability to target and kill leukemia stem cells. Efforts toward improving the biological activity of micheliolide and investigating its mechanism of action have been hindered by the paucity of preexisting functional groups amenable for late-stage derivatization of this molecule. Here, we report the implementation of a probe-based P450 fingerprinting strategy to rapidly evolve engineered P450 catalysts useful for the regio- and stereoselective hydroxylation of micheliolide at two previously inaccessible aliphatic positions in this complex natural product. Via P450-mediated chemoenzymatic synthesis, a broad panel of novel micheliolide analogs could thus be obtained to gain structure-activity insights into the effect of C2, C4, and C14 substitutions on the antileukemic activity of micheliolide, ultimately leading to the discovery of "micheliologs" with improved potency against acute myelogenic leukemia cells. These late-stage C-H functionalization routes could be further leveraged to generate a panel of affinity probes for conducting a comprehensive analysis of the protein targeting profile of micheliolide in leukemia cells via chemical proteomics analyses. These studies introduce new micheliolide-based antileukemic agents and shed new light onto the biomolecular targets and mechanism of action of micheliolide in leukemia cells. More broadly, this work showcases the value of the present P450-mediated C-H functionalization strategy for streamlining the late-stage diversification and elucidation of the biomolecular targets of a complex bioactive molecule.

11.
Mol Cell Proteomics ; 20: 100041, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639418

RESUMEN

Cells continually degrade and replace damaged proteins. However, the high energetic demand of protein turnover generates reactive oxygen species that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover, and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse life spans including the longest-lived mammal, the bowhead whale. We show that organismal life span is negatively correlated with turnover rates of highly abundant proteins. In comparison with mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production, and reduced reactive oxygen species levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of a rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.


Asunto(s)
Proteoma , Aminoácidos , Animales , Humanos , Cinética , Luz , Longevidad , Preparaciones Farmacéuticas , Proteómica , Radioisótopos , Especificidad de la Especie
12.
EMBO Mol Med ; 13(2): e12710, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33369227

RESUMEN

Aberrant expression of mitochondrial proteins impairs cardiac function and causes heart disease. The mechanism of regulation of mitochondria encoded protein expression during cardiac disease, however, remains underexplored. Here, we show that multiple pathogenic cardiac stressors induce the expression of miR-574 guide and passenger strands (miR-574-5p/3p) in both humans and mice. miR-574 knockout mice exhibit severe cardiac disorder under different pathogenic cardiac stresses while miR-574-5p/3p mimics that are delivered systematically using nanoparticles reduce cardiac pathogenesis under disease insults. Transcriptomic analysis of miR-574-null hearts uncovers family with sequence similarity 210 member A (FAM210A) as a common target mRNA of miR-574-5p and miR-574-3p. The interactome capture analysis suggests that FAM210A interacts with mitochondrial translation elongation factor EF-Tu. Manipulating miR-574-5p/3p or FAM210A expression changes the protein expression of mitochondrial-encoded electron transport chain (ETC) genes but not nuclear-encoded mitochondrial ETC genes in both human AC16 cardiomyocyte cells and miR-574-null murine hearts. Together, we discovered that miR-574 regulates FAM210A expression and modulates mitochondrial-encoded protein expression, which may influence cardiac remodeling in heart failure.


Asunto(s)
MicroARNs , Remodelación Ventricular , Animales , Perfilación de la Expresión Génica , Ratones , MicroARNs/genética , Proteínas Mitocondriales , Miocitos Cardíacos , ARN Mensajero
13.
Proc Natl Acad Sci U S A ; 117(46): 28727-28734, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33144500

RESUMEN

A methionine-rich low complexity (LC) domain is found within a C-terminal region of the TDP43 RNA-binding protein. Self-association of this domain leads to the formation of labile cross-ß polymers and liquid-like droplets. Treatment with H2O2 caused phenomena of methionine oxidation and droplet melting that were reversed upon exposure of the oxidized protein to methionine sulfoxide reductase enzymes. Morphological features of the cross-ß polymers were revealed by H2O2-mediated footprinting. Equivalent TDP43 LC domain footprints were observed in polymerized hydrogels, liquid-like droplets, and living cells. The ability of H2O2 to impede cross-ß polymerization was abrogated by the prominent M337V amyotrophic lateral sclerosis-causing mutation. These observations may offer insight into the biological role of TDP43 in facilitating synapse-localized translation as well as aberrant aggregation of the protein in neurodegenerative diseases.


Asunto(s)
Ataxina-2/metabolismo , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Células HEK293 , Humanos , Polimerizacion , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo
14.
Prion ; 14(1): 193-205, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32744136

RESUMEN

Prion diseases are characterized by the self-templated misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc). The detailed molecular basis of the misfolding and aggregation of PrPC remains incompletely understood. It is believed that the transient misfolding of PrPC into partially structured intermediates precedes the formation of insoluble protein aggregates and is a critical component of the prion misfolding pathway. A number of environmental factors have been shown to induce the destabilization of PrPC and promote its initial misfolding. Recently, oxidative stress and reactive oxygen species (ROS) have emerged as one possible mechanism by which the destabilization of PrPC can be induced under physiological conditions. Methionine residues are uniquely vulnerable to oxidation by ROS and the formation of methionine sulfoxides leads to the misfolding and subsequent aggregation of PrPC. Here, we provide a review of the evidence for the oxidation of methionine residues in PrPC and its potential role in the formation of pathogenic prion aggregates.


Asunto(s)
Metionina/metabolismo , Proteínas Priónicas/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Oxidación-Reducción , Estrés Oxidativo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Proteínas Priónicas/química
15.
Sci Rep ; 10(1): 12952, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32719387

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Sci Rep ; 10(1): 10800, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612191

RESUMEN

Prion diseases are rare, neurological disorders caused by the misfolding of the cellular prion protein (PrPC) into cytotoxic fibrils (PrPSc). Intracellular PrPSc aggregates primarily accumulate within late endosomes and lysosomes, organelles that participate in the degradation and turnover of a large subset of the proteome. Thus, intracellular accumulation of PrPSc aggregates has the potential to globally influence protein degradation kinetics within an infected cell. We analyzed the proteome-wide effect of prion infection on protein degradation rates in N2a neuroblastoma cells by dynamic stable isotopic labeling with amino acids in cell culture (dSILAC) and bottom-up proteomics. The analysis quantified the degradation rates of more than 4,700 proteins in prion infected and uninfected cells. As expected, the degradation rate of the prion protein is significantly decreased upon aggregation in infected cells. In contrast, the degradation kinetics of the remainder of the N2a proteome generally increases upon prion infection. This effect occurs concurrently with increases in the cellular activities of autophagy and some lysosomal hydrolases. The resulting enhancement in proteome flux may play a role in the survival of N2a cells upon prion infection.


Asunto(s)
Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Proteolisis , Proteoma/metabolismo , Línea Celular Tumoral , Humanos , Proteómica
17.
J Proteome Res ; 19(2): 624-633, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31801345

RESUMEN

The oxidation of methionine is an important post-translational modification of proteins with numerous roles in physiology and pathology. However, the quantitative analysis of methionine oxidation on a proteome-wide scale has been hampered by technical limitations. Methionine is readily oxidized in vitro during sample preparation and analysis. In addition, there is a lack of enrichment protocols for peptides that contain an oxidized methionine residue, making the accurate quantification of methionine oxidation difficult to achieve on a global scale. Herein, we report a methodology to circumvent these issues by isotopically labeling unoxidized methionines with 18O-labeled hydrogen peroxide and quantifying the relative ratios of 18O- and 16O-oxidized methionines. We validate our methodology using artificially oxidized proteomes made to mimic varying degrees of methionine oxidation. Using this method, we identify and quantify a number of novel sites of in vivo methionine oxidation in an unstressed human cell line.


Asunto(s)
Metionina , Proteoma , Humanos , Metionina/metabolismo , Oxidación-Reducción , Péptidos , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(13): 6081-6090, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846556

RESUMEN

The stability of proteins influences their tendency to aggregate, undergo degradation, or become modified in cells. Despite their significance to understanding protein folding and function, quantitative analyses of thermodynamic stabilities have been mostly limited to soluble proteins in purified systems. We have used a highly multiplexed proteomics approach, based on analyses of methionine oxidation rates, to quantify stabilities of ∼10,000 unique regions within ∼3,000 proteins in human cell extracts. The data identify lysosomal and extracellular proteins as the most stable ontological subsets of the proteome. We show that the stability of proteins impacts their tendency to become oxidized and is globally altered by the osmolyte trimethylamine N-oxide (TMAO). We also show that most proteins designated as intrinsically disordered retain their unfolded structure in the complex environment of the cell. Together, the data provide a census of the stability of the human proteome and validate a methodology for global quantitation of folding thermodynamics.


Asunto(s)
Metionina/metabolismo , Pliegue de Proteína , Estabilidad Proteica , Proteínas/química , Proteoma/metabolismo , Fibroblastos/metabolismo , Humanos , Espectrometría de Masas , Muramidasa/metabolismo , Oxidación-Reducción , Conformación Proteica , Termodinámica
19.
Aging Cell ; 18(3): e12849, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30810280

RESUMEN

Aging is associated with a progressive loss of tissue and metabolic homeostasis. This loss can be delayed by single-gene perturbations, increasing lifespan. How such perturbations affect metabolic and proteostatic networks to extend lifespan remains unclear. Here, we address this question by comprehensively characterizing age-related changes in protein turnover rates in the Drosophila brain, as well as changes in the neuronal metabolome, transcriptome, and carbon flux in long-lived animals with elevated Jun-N-terminal Kinase signaling. We find that these animals exhibit a delayed age-related decline in protein turnover rates, as well as decreased steady-state neuronal glucose-6-phosphate levels and elevated carbon flux into the pentose phosphate pathway due to the induction of glucose-6-phosphate dehydrogenase (G6PD). Over-expressing G6PD in neurons is sufficient to phenocopy these metabolic and proteostatic changes, as well as extend lifespan. Our study identifies a link between metabolic changes and improved proteostasis in neurons that contributes to the lifespan extension in long-lived mutants.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Drosophila/genética , Glucosafosfato Deshidrogenasa/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteostasis , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Encéfalo/fisiología , Drosophila/enzimología , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Ontología de Genes , Glucosa/análogos & derivados , Glucosa/genética , Glucosa/metabolismo , Glucólisis/genética , Glucólisis/fisiología , Longevidad/genética , Longevidad/fisiología , Lisina/análogos & derivados , Lisina/metabolismo , Espectrometría de Masas , Mutación , Vía de Pentosa Fosfato/genética , Vía de Pentosa Fosfato/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Proteostasis/genética , Proteostasis/fisiología , RNA-Seq , Transducción de Señal/genética
20.
Elife ; 72018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30044219

RESUMEN

Regulating nuclear histone balance is essential for survival, yet in early Drosophila melanogaster embryos many regulatory strategies employed in somatic cells are unavailable. Previous work had suggested that lipid droplets (LDs) buffer nuclear accumulation of the histone variant H2Av. Here, we elucidate the buffering mechanism and demonstrate that it is developmentally controlled. Using live imaging, we find that H2Av continuously exchanges between LDs. Our data suggest that the major driving force for H2Av accumulation in nuclei is H2Av abundance in the cytoplasm and that LD binding slows nuclear import kinetically, by limiting this cytoplasmic pool. Nuclear H2Av accumulation is indeed inversely regulated by overall buffering capacity. Histone exchange between LDs abruptly ceases during the midblastula transition, presumably to allow canonical regulatory mechanisms to take over. These findings provide a mechanistic basis for the emerging role of LDs as regulators of protein homeostasis and demonstrate that LDs can control developmental progression.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Histonas/genética , Gotas Lipídicas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Blastodermo/metabolismo , Núcleo Celular/metabolismo , Cromosomas/metabolismo , Corriente Citoplasmática , Proteínas de Drosophila/metabolismo , Desarrollo Embrionario , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Interfase , Cinética , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...