Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 168: 42-77, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37481193

RESUMEN

To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Polisacáridos/farmacología , Materiales Biocompatibles Revestidos/farmacología
2.
Sci Rep ; 8(1): 12312, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120373

RESUMEN

Near perfect absorbers find application in many areas including solar cells, energy harvesting and antireflection coatings for space applications. Here we report the use of optical gradation concept to fabricate a near perfect absorber on etched Si wafer. As a proof of concept, 99.4% absorption is achieved in the broad range of 300 nm to 2000 nm. Moreover, absorption capacity of optically graded surface remains higher than 99% up to beam incident angle of 50°. While carbon nanotubes (index ~1.1) are used as top layer, subsequent layers with increasing optical index across the thickness are chosen so as to satisfy zero reflection condition on multilayered assembly. Inward bending of incident beam and total internal reflection of reflected beam caused due to optical index gradient contributes to absorb the incident beam more efficiently. In addition, multiple scattering of incident beam due to the presence of multiscale feature size in graded assembly helps to absorb shorter as well as longer wavelengths of incident light. The graded assembly shows contact angle of 160° with roll-off angle equal to 5° implying that the graded absorber is not only super black but also superhydrophobic and self-cleaning in nature. The combination of properties shown by the super absorber makes it very attractive, especially for next generation solar cells to harness energy in the wavelength range of 1000 nm to 2000 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...