Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Curr Res Struct Biol ; 7: 100146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707547

RESUMEN

Nowadays, one of the methods to prevent the progress of Alzheimer's disease (AD) is to prescribe compounds that inhibit the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Researchers are actively pursuing compounds, particularly of natural origin, that exhibit enhanced efficacy and reduced side effects. The inhibition of AChE and BChE using natural flavonoids represents a promising avenue for regulating AD. This study aims to identify alternative flavonoids capable of modulating AD by down-regulating AChE and BChE activity through a molecular docking approach. Molecular docking analysis identified Ginkgetin and Kolaflavanone as potent inhibitors of AChE and BChE, respectively, among the selected flavonoids. Asn87 and Ala127 involved in the interactions of AChE-Ginkgetin complex through conventional hydrogen bonds. While in the BChE-Kolaflavanone complex, Asn83, Ser79, Gln 47, and Ser287 are involved. In vitro analysis further corroborated the inhibitory potential, with Ginkgetin exhibiting an IC50 of 3.2 mM against AChE, and Kolaflavanone displaying an IC50 of 3.6 mM against BChE. These findings underscore the potential of Ginkgetin and Kolaflavanone as candidate inhibitors for the treatment of AD through the inhibition of AChE and BChE enzymes. Nevertheless, additional in vitro and in vivo studies are imperative to validate the efficacy of these compounds.

2.
Int J Biol Macromol ; 270(Pt 1): 132164, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729474

RESUMEN

The process of developing novel compounds/drugs is arduous, time-intensive, and financially burdensome, characterized by a notably low success rate and relatively high attrition rates. To alleviate these challenges, compound/drug repositioning strategies are employed to predict potential therapeutic effects for DrugBank-approved compounds across various diseases. In this study, we devised a computational and enzyme inhibitory mechanistic approach to identify promising compounds from the pool of DrugBank-approved substances targeting Diabetes Mellitus (DM). Molecular docking analyses were employed to validate the binding interaction patterns and conformations of the screened compounds within the active site of α-glucosidase. Notably, Asp352 and Glu277 participated in interactions within the α-glucosidase-ligand complexes, mediated by conventional hydrogen bonding and van der Waals forces, respectively. The stability of the docked complexes (α-glucosidase-compounds) was scrutinized through Molecular Dynamics (MD) simulations. Subsequent in vitro analyses assessed the therapeutic potential of the repositioned compounds against α-glucosidase. Kinetic studies revealed that "Forodesine" exhibited a lower IC50 (0.24 ± 0.04 mM) compared to the control, and its inhibitory pattern corresponds to that of competitive inhibitors. In-depth in silico secondary structure content analysis detailed the interactions between Forodesine and α-glucosidase, unveiling significant alterations in enzyme conformation upon binding, impacting its catalytic activity. Overall, our findings underscore the potential of Forodesine as a promising candidate for DM treatment through α-glucosidase inhibition. Further validation through in vitro and in vivo studies is imperative to confirm the therapeutic benefits of Forodesine in conformational diseases such as DM.

3.
Daru ; 32(1): 237-251, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498253

RESUMEN

BACKGROUND: The cholinergic hypothesis posits a robust correlation between the onset of Alzheimer's disease and a pronounced deficit in acetylcholine, a pivotal neurotransmitter crucial for the central cholinergic nervous system's function, pivotal for memory and learning. Diterpene alkaloids exhibit intricate and distinctive chemical structures that facilitate their passage through the blood-brain barrier. Moreover, their potent pharmacological attributes render them promising candidates for addressing central nervous system disorders. OBJECTIVES: This investigation aims to scrutinize the alkaloidal composition of Delphinium cyphoplectrum (Ranunculaceae) roots, further exploring their anticholinesterase inhibitory activity and mode of inhibition. METHOD: Innovative chromatography techniques were repetitively employed to purify the alkaloids. Acetylcholinesterase (AChE) inhibition assays were conducted using Ellman's tests. The mode of inhibition was meticulously characterized through Michaelis-Menten, and Lineweaver-Burk plots. Conducting molecular docking studies, we employed the AUTO DOCK 4.2 software package. RESULTS: Eight alkaloids were identified including five C19-diterpene alkaloids (6,14,16,18-tetramethoxy-1,7,8-trihydroxy-4-methylaconitane (1), 6,16,18-trimethoxy-1,7,8,14-tetrahydroxy-4-methylaconitane (2), 6,8,16,18-tetramethoxy-1,7,14-trihydroxy-4-methylaconitane (3), 6,14,16-trimethoxy-1,7,8,18-tetrahydroxy-4-methylaconitane (4), and 14-O-acetyl-8,16-dimethoxy-1,6,7,18-tetrahydroxy-4-methylaconitane (5)), an epoxy C18-diterpene alkaloid (6,8,16-trimethoxy-1,7,14-trihydroxy-3,4-epoxyaconitane (6)), a known (pyrrolidin-2-one (7) and an undescribed amide alkaloid (1-(2'-hydroxylethylamine)-3,5,5,-trimethyl-1,5-dihydro-2H-pyrrol-2-one (8). All diterpene alkaloids underwent assessment for acetylcholinesterase (AChE) inhibition assay and displayed noteworthy AChE activity, surpassing that of the reference drug (with IC50 values of 13.7, 21.8, 23.4, 28.2, 40.4, and 23.9 for compounds 1-6, respectively, in comparison to 98.4 for Rivastigmine). Analysis of Michaelis-Menten and Lineweaver-Burk plots represents an uncompetitive mode of inhibition for compound 1 on AChE. Notably, computational docking simulations indicated that all diterpene alkaloids were accommodated within the same enzymatic cleft as the reference ligand, and displaying superior free binding energy values (from - 10.32 to -8.59 Kcal.mol-1) in contrast to Rivastigmine (-6.31 Kcal.mol-1). CONCLUSION: The phytochemical analysis conducted on the roots of Delphinium cyphoplectrum yielded the identification of eight alkaloidal compounds including one C18-diterpene, five C19-diterpene, one pyrrolidine and one amide alkaloids. AChE inhibition assay and molecular simulations unveiled remarkable significant potency attributed to the C19-diterpene alkaloids by the order of 1 > 2 > 3,6 > 4 > 5. Presence of hydroxyl group on C-1, C-7, C-8, C-14, and C-18 increased the effect. The best in vitro activity was recorded for compound 1 able to bind to Asp72 in the narrow region of PAS, while interacting by pi-sigma with Phe330 at the hydrophobic region of the gorge involving the acyl and choline binding site. This observation underscores the substantial promise of this category of natural products in the realm of drug discovery for Alzheimer's Disease, offering a compelling avenue for further research and therapeutic development.


Asunto(s)
Inhibidores de la Colinesterasa , Delphinium , Simulación del Acoplamiento Molecular , Raíces de Plantas , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Delphinium/química , Raíces de Plantas/química , Alcaloides Diterpénicos/química , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Alcaloides/química , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Animales , Diterpenos/química , Diterpenos/farmacología , Diterpenos/aislamiento & purificación
4.
BMC Cancer ; 24(1): 125, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267906

RESUMEN

BACKGROUND: T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is a cell surface molecule that was first discovered on T cells. However, recent studies revealed that it is also highly expressed in acute myeloid leukemia (AML) cells and it is related to AML progression. As, Glutamine appears to play a prominent role in malignant tumor progression, especially in their myeloid group, therefore, in this study we aimed to evaluate the relation between TIM-3/Galectin-9 axis and glutamine metabolism in two types of AML cell lines, HL-60 and THP-1. METHODS: Cell lines were cultured in RPMI 1640 which supplemented with 10% FBS and 1% antibiotics. 24, 48, and 72 h after addition of recombinant Galectin-9 (Gal-9), RT-qPCR analysis, RP-HPLC and gas chromatography techniques were performed to evaluate the expression of glutaminase (GLS), glutamate dehydrogenase (GDH) enzymes, concentration of metabolites; Glutamate (Glu) and alpha-ketoglutarate (α-KG) in glutaminolysis pathway, respectively. Western blotting and MTT assay were used to detect expression of mammalian target of rapamycin complex (mTORC) as signaling factor, GLS protein and cell proliferation rate, respectively. RESULTS: The most mRNA expression of GLS and GDH in HL-60 cells was seen at 72 h after Gal-9 treatment (p = 0.001, p = 0.0001) and in THP-1 cell line was observed at 24 h after Gal-9 addition (p = 0.001, p = 0.0001). The most mTORC and GLS protein expression in HL-60 and THP-1 cells was observed at 72 and 24 h after Gal-9 treatment (p = 0.0001), respectively. MTT assay revealed that Gal-9 could promote cell proliferation rate in both cell lines (p = 0.001). Glu concentration in HL-60 and α-KG concentration in both HL-60 (p = 0.03) and THP-1 (p = 0.0001) cell lines had a decreasing trend. But, Glu concentration had an increasing trend in THP-1 cell line (p = 0.0001). CONCLUSION: Taken together, this study suggests TIM-3/Gal-9 interaction could promote glutamine metabolism in HL-60 and THP-1 cells and resulting in AML development.


Asunto(s)
Glutamina , Leucemia Mieloide Aguda , Humanos , Ácido Glutámico , Receptor 2 Celular del Virus de la Hepatitis A , Células HL-60
5.
Nat Prod Res ; 38(1): 16-27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-35856479

RESUMEN

Two new eudesmane-type sesquiterpene lactones, 1ß,3α,8α-trihydroxy-11ß,13-dihydroeudesma-4(15)-en-12,6α-olide (1) and 1ß,4α,8α-trihydroxy-11ß,13-dihydroeudesma-12,6α-olide (2), and an unprecedented elemane-type sesquiterpene lactone, 1ß,2ß,8α-trihydroxy-11ß,13-dihydroelema-12,6α-olide (3) along with a known eudesmanolide artapshin (4) were isolated from Seriphidium khorassanicum. Structures were elucidated by NMR, HR-ESI-MS, and ECD spectral data analysis. The anti-protozoal activity was evaluated against Leishmania major promastigotes and amastigote-infected macrophages. They showed dose- and time-dependent activity against L. major amastigotes with IC50 values in the range of 4.9 to 25.3 µM being favourably far below their toxicity against normal murine macrophages with CC50 values ranging from 432.5 to 620.7 µM after 48 h of treatment. Compound 3 exhibited the strongest activity and the highest selectivity index (SI) with IC50 of 4.9 ± 0.6 µM and SI of 88.2 comparable with the standard drug, meglumine antimoniate (Glucantime), with IC50 and SI values of 15.5 ± 2.1 µM and 40.0, respectively.


Asunto(s)
Artemisia , Asteraceae , Sesquiterpenos , Ratones , Animales , Lactonas/farmacología , Lactonas/química , Asteraceae/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Fitoquímicos/farmacología , Componentes Aéreos de las Plantas
6.
Front Immunol ; 14: 1267578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022614

RESUMEN

Introduction: T-cell immunoglobulin and mucin domain-3 (TIM-3) is a transmembrane molecule first identified as an immunoregulator. This molecule is also expressed on leukemic cells in acute myeloid leukemia and master cell survival and proliferation. In this study, we aimed to explore the effect of TIM-3 interaction with its ligand galectin-9 (Gal-9) on glucose and lipid metabolism in AML cell lines. Methods: HL-60 and THP-1 cell lines, representing M3 and M5 AML subtypes, respectively, were cultured under appropriate conditions. The expression of TIM-3 on the cell surface was ascertained by flow cytometric assay. We used real-time PCR to examine the mRNA expression of GLUT-1, HK-2, PFKFB-3, G6PD, ACC-1, ATGL, and CPT-1A; colorimetric assays to measure the concentration of glucose, lactate, GSH, and the enzymatic activity of G6PD; MTT assay to determine cellular proliferation; and gas chromatography-mass spectrometry (GC-MS) to designate FFAs. Results: We observed the significant upregulated expression of GLUT-1, HK-2, PFKFB-3, ACC-1, CPT-1A, and G6PD and the enzymatic activity of G6PD in a time-dependent manner in the presence of Gal-9 compared to the PMA and control groups in both HL-60 and THP-1 cell lines (p > 0.05). Moreover, the elevation of extracellular free fatty acids, glucose consumption, lactate release, the concentration of cellular glutathione (GSH) and cell proliferation were significantly higher in the presence of Gal-9 compared to the PMA and control groups in both cell lines (p < 0.05). Conclusion: TIM-3/Gal-9 ligation on AML cell lines results in aerobic glycolysis and altered lipid metabolism and also protects cells from oxidative stress, all in favor of leukemic cell survival and proliferation.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Leucemia Mieloide Aguda , Humanos , Galectinas/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Células HL-60 , Lactatos , Leucemia Mieloide Aguda/genética , Metabolismo de los Lípidos
7.
Int J Biol Macromol ; 253(Pt 7): 127380, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37838108

RESUMEN

Biflavonoids (BFs) are a group of polyphenols that have a unique biochemical structure. One of the key biomedical mechanisms that BFs can have high potential in managing Diabetes mellitus (DM) is α-glucosidase inhibition. Normally, elevated blood glucose levels are caused by high absorption of glucose in the epithelium of the small intestine. Since α-glucosidase helps increase the absorption of glucose in the small intestine in the final stage of glycan catabolism, inhibition of this essential biochemical process in diabetic patients can be considered a suitable approach in the treatment of this disease. The interaction between the BFs and α-glucosidase are still not clear, and need to be deeply investigated. Herein, the aim is to identify BFs with strong α-glucosidase inhibitory activity. Using docking-based virtual screening approach, the potential binding affinity of 18 selected BFs to α-glucosidase was evaluated. The dynamic activity and stability of α-glucosidase-BFs complexes were then measured by molecular dynamics simulation (MDs). "Strychnobiflavone" showed the best score in α-glucosidase inhibition. Arg315 and Phe303 involved in the interactions of α-glucosidase-strychnobiflavone complex through cation-π and π-π stacking, respectively. Based on in vitro kinetic studies, it was determined that the type of inhibition of "strychnobiflavone" corresponds to the pattern of mixed inhibitors. Furthermore, details of the interactions between strychnobiflavone and α-glucosidase were performed by in silico secondary structure content analysis. The findings showed when "strychnobifone" binds to the enzyme, significant alterations occur in the enzyme conformation affecting its catalytic activity. In general, the findings highlighted the potential of "strychnobiflavone" as a promising candidate for the treatment of diabetes mellitus through α-glucosidase inhibition. Further in vitro and in vivo studies have to confirm the therapeutic benefits of "strychnobiflavone" in conformational diseases such as diabetes mellitus.


Asunto(s)
Biflavonoides , Diabetes Mellitus , Humanos , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Cinética , Biflavonoides/farmacología , Glucosa
8.
Life Sci ; 333: 122143, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797686

RESUMEN

INTRODUCTION: The flavonoid-rich fraction of Rosa damascena (FRFRD) contains antioxidant and active compounds. Therefore, this study aimed to investigate the role of FRFRD, rich in quercetin and kaempferol, in liver fibrosis induced by CCl4. MATERIALS AND METHODS: The FRFRD fraction was separated and standardized by High-Performance Liquid Chromatography (HPLC) based on the levels of quercetin and kaempferol. Liver fibrosis was induced over CCl4 over 12 weeks in 30 male Wistar rats, and three concentrations of FRFRD were administered to them during the last four weeks. Subsequently, after evaluation of liver serum markers and fibrotic parameters, the relative expression of transforming growth factor-beta-1 (TGF-ß1), platelet-derived growth factor (PDGF), and lysyl oxidase homolog 2 (Loxl2) genes were assessed, along with the measurement of lysyl oxidase activity and oxidative markers. RESULTS: Fibrotic markers demonstrated progressive recovery of liver damage in the treated group compared to the non-treatment group (p < 0.01). These results were accompanied by a significant decrease in the expression of TGF-ß1, PDGF, and Loxl2 genes, as well as, a reduction in lysyl oxidase activity (p < 0.001). The antioxidant effects of the treatment were observed through a significant decrease in malondialdehyde (MDA) levels and an increase in catalase enzyme (CAT) and glutathione peroxidase (GPx) activity in the treatment group compared to the fibrotic group (p < 0.01). CONCLUSION: The flavonoid-rich fraction of Rosa damascena ameliorates liver damage by affecting collagen cross-linking and lowering oxidative and inflammatory levels.


Asunto(s)
Antioxidantes , Rosa , Masculino , Ratas , Animales , Antioxidantes/metabolismo , Citocinas/metabolismo , Rosa/metabolismo , Quempferoles/farmacología , Quercetina/farmacología , Quercetina/metabolismo , Oxidantes/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Ratas Wistar , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Fibrosis , Factor de Crecimiento Transformador beta1/metabolismo , Flavonoles/farmacología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Flavonoides/metabolismo , Colágeno/metabolismo , Modelos Animales , Tetracloruro de Carbono/farmacología
9.
Res Pharm Sci ; 18(3): 317-325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593167

RESUMEN

Background and purpose: Salvia abrotanoides is considered a medicinal plant and has a broad distribution in Iran. In Iran's traditional medicine, it is also used to treat leishmaniasis, malaria, atherosclerosis, cardiovascular disease, and as a disinfectant. This research aimed to determine the anti-Candida component from S. abratonoides and anti-Trichomonas natural compounds from the stems of this plant. Experimental approach: The plant shoots were collected, dried, and after removing the leaves, grounded. Dried plant material was extracted in a maceration tank, concentrated by a Rotavap, degreased, and fractionated by normal column chromatography. Based on anti-fungal screening against Candida species, Fr. 4, with more anti-fungal activity, was selected for phytochemical analysis, by different chromatographic methods on the silica gel column and Sephadex LH-20. Isolated compounds were elucidated by NMR analysis, mass spectrum, and ultraviolet spectroscopy. Anti-fungal effects were investigated using the fungal suspension, incubation, and parasite-counting methods on purified compounds. Antibacterial effects were assessed using the Broth dilution test and reported according to the MIC parameter. Findings/Results: Two diterpenoid compounds named carnosol (compound 1), 11-hydroxy-12-methoxy-20-norabiata-8, 11, 13-trien (compound 2), and a flavonoid: 6,7-dimethoxy-5, 4'-dihydroxyflavone (compound 3) were isolated and identified. Compound 1 had selective anti-fungal effects against C. albicans, C. glabrata, and C. parapsilosis, but weak toxicity against Trichomonas vaginalis with IC50 of 675.8 µg/mL, less than metronidazole with an IC50 of 13.2 µg/mL. Conclusion and implications: Carnosol as the main component was assayed against Candida, Aspergillus, Rhizopus, and Trichomanas species. The results confirmed its effect on Candida compared to standard drugs.

10.
BMC Cancer ; 23(1): 447, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193972

RESUMEN

BACKGROUND: Leukemic cell metabolism plays significant roles in their proliferation and survival. These metabolic adaptations are under regulation by different factors. Programmed Death Ligand -1 (CD-274) is one of the immune checkpoint ligands that do not only cause the immune escape of cancer cells, but also have some intracellular effects in these cells. PD-L1 is overexpressed on leukemic stem cells and relates with poor prognosis of AML. In this study, we investigated effects of PD-L1 stimulation on critical metabolic pathways of glucose and fatty acid metabolisms that have important roles in proliferation and survival of leukemic cells. METHODS: After confirmation of PD-L1 expression by flow cytometry assay, we used recombinant protein PD-1 for stimulation of the PD-L1 on two AML cell lines, HL-60 and THP-1. Then we examined the effect of PD-L1 stimulation on glucose and fatty acid metabolism in cells at the genomic and metabolomic levels in a time dependent manner. We investigated expression changes of rate limiting enzymes of theses metabolic pathways (G6PD, HK-2, CPT1A, ATGL1 and ACC1) by qRT-PCR and also the relative abundance changes of free fatty acids of medium by GC. RESULTS: We identified a correlation between PD-L1 stimulation and both fatty acid and glucose metabolism. The PD-L1 stimulated cells showed an influence in the pentose phosphate pathway and glycolysis by increasing expression of G6PD and HK-2 (P value = 0.0001). Furthermore, PD-L1 promoted fatty acid ß-oxidation by increasing expression of CPT1A (P value = 0.0001), however, their fatty acid synthesis was decreased by reduction of ACC1 expression (P value = 0.0001). CONCLUSION: We found that PD-L1 can promote proliferation and survival of AML stem cells probably through some metabolic changes in leukemic cells. Pentose phosphate pathway that has a critical role in cell proliferation and fatty acids ß-oxidation that promote cell survival, both are increased by PD-L1 stimulation on AML cells.


Asunto(s)
Antígeno B7-H1 , Leucemia Mieloide Aguda , Humanos , Antígeno B7-H1/metabolismo , Glucosa/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células HL-60 , Proliferación Celular
11.
Pharmaceuticals (Basel) ; 16(5)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37242531

RESUMEN

This study provides a narrative review of diterpenoid alkaloids (DAs), a family of extremely important natural products found predominantly in some species of Aconitum and Delphinium (Ranunculaceae). DAs have long been a focus of research attention due to their numerous intricate structures and diverse biological activities, especially in the central nervous system (CNS). These alkaloids originate through the amination reaction of tetra or pentacyclic diterpenoids, which are classified into three categories and 46 types based on the number of carbon atoms in the backbone structure and structural differences. The main chemical characteristics of DAs are their heterocyclic systems containing ß-aminoethanol, methylamine, or ethylamine functionality. Although the role of tertiary nitrogen in ring A and the polycyclic complex structure are of great importance in drug-receptor affinity, in silico studies have emphasized the role of certain sidechains in C13, C14, and C8. DAs showed antiepileptic effects in preclinical studies mostly through Na+ channels. Aconitine (1) and 3-acetyl aconitine (2) can desensitize Na+ channels after persistent activation. Lappaconitine (3), N-deacetyllapaconitine (4), 6-benzoylheteratisine (5), and 1-benzoylnapelline (6) deactivate these channels. Methyllycaconitine (16), mainly found in Delphinium species, possesses an extreme affinity for the binding sites of α7 nicotinic acetylcholine receptors (nAChR) and contributes to a wide range of neurologic functions and the release of neurotransmitters. Several DAs such as bulleyaconitine A (17), (3), and mesaconitine (8) from Aconitum species have a drastic analgesic effect. Among them, compound 17 has been used in China for decades. Their effect is explained by increasing the release of dynorphin A, activating the inhibitory noradrenergic neurons in the ß-adrenergic system, and preventing the transmission of pain messages by inactivating the Na+ channels that have been stressed. Acetylcholinesterase inhibitory, neuroprotective, antidepressant, and anxiolytic activities are other CNS effects that have been investigated for certain DAs. However, despite various CNS effects, recent advances in developing new drugs from DAs were insignificant due to their neurotoxicity.

12.
Metabolites ; 13(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36837845

RESUMEN

Isolated diterpenes from various species of Euphorbia are important compounds for drug discovery with a broad spectrum of structures and biological effects. In this study, Euphorbia gedrosiaca, one of the endemic species of Iran, was analyzed in terms of the presence and structural determination of diterpenoid compounds. They were extracted with dichloromethane/acetone (2:1) from aerial parts of this plant and purified by chromatographic methods such as MPLC and HPLC. Four premyrsinane compounds and one myrsinane diterpene were isolated from Euphorbia gedrosiaca. They were characterized by extensive 1D and 2D NMR and HRMS analyses. Additionally, their activities were evaluated against two breast cancer cell lines, MDA-MB-231 and MCF-7, by MTT proliferation assay. They exhibited cytotoxic effects in a dose-dependent manner with promising results, which can help to find possible therapeutic application of diterpenoids in breast cancer treatment.

13.
Cell J ; 25(2): 110-117, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36840457

RESUMEN

OBJECTIVE: The function of Th17 cells in the neuroinflammatory process in multiple sclerosis (MS) has been previously clarified. It has been suggested that Quercetin can influence MS due to a variety of anti-inflammatory effects. The present study aimed to examine in vitro immunomodulatory aspects of Quercetin Penta Acetate as a modified compound on Th17 cells of MS patients and also to compare its effects with Quercetin. MATERIALS AND METHODS: In this experimental study, peripheral blood mononuclear cell (PBMCs) were isolated and stained with CFSE then, half-maximal inhibitory concentration (IC50) values were determined using different doses and times for Quercetin Penta Acetate, and Methyl Prednisolone Acetate. Th17 cell proliferation was analyzed by flow cytometry and the expression levels of IL-17 and RORc genes were assessed by real-time polymerase chain reaction (PCR) method. RESULTS: The results showed that IL-17 gene expression was inhibited by Quercetin Penta Acetate (P=0.0081), but Quercetin Penta Acetate did not have a significant inhibitory effect on Th17 cells proliferation (P= 0.59) and RORc gene expression (P=0.1), compared to Quercetin. CONCLUSION: Taken together, our results showed some immunomodulatory aspects of Quercetin Penta Acetate on Th17 cells are more effective than Quercetin and it could be considered in the treatment of MS.

14.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1749-1758, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36826495

RESUMEN

Unfolded protein response (UPR) is involved in breast cancer (BC) progression and drug resistance. Many natural products (NPs) could modulate UPR and used for therapeutic purposes. Herein, we aimed to investigate the molecular mechanism of Cycloart-23E-ene-3ß, 25-diol (Cycloart-E25), cytotoxicity, as a NP extracted from Euphorbia macrostegia and focused on endoplasmic-reticulum stress (ERS) and UPR signaling pathways. Reactive oxygen species (ROS) were probed by DCFDA fluorescence dye. Apoptosis was assayed by annexin V/propidium iodide (PI), immunoblotting of anti- and proapoptotic, Bcl-2 and Bax proteins, and mitochondrial transmembrane potential (ΔΨm) changes. Thioflavin T (ThT) staining and immunoblotting of UPR signaling components (CHOP, PERK, ATF6, BiP, and XBP1) were recruited for the assessment of ERS. Our results indicated that Cycloart-E25 noticeably increases ROS levels in both MB-231 MDA-MB-231 and MCF-7 cell lines, p>0.05. Flow cytometry assessments revealed an increase in the cell population undergoing apoptosis. Also, the Bax/Bcl-2 ratio increased in a dose-dependent manner following Cycloart-E25 treatment, significantly, p>0.05. Mitochondrial involvement could be deduced by significant decreases in ΔΨm, p>0.05. Cycloart-E25 potently induces protein aggregation and upregulated CHOP, PERK, ATF6, BiP, and XBP1 factors in both MDA-MB-231 MB-231 and MCF-7 cell lines, indicating the involvement of ERS in Cycloart-E25-mediated apoptosis. In conclusion, Cycloart-E25 increased the accumulation of misfolded proteins and upregulated UPR components. Therefore, induction of ERS may be involved in the trigger of apoptosis in BC cell lines. Cycloart-E25 induced apoptosis in breast cancer cell lines through ERS. More assessments are needed to confirm its in vivo anti-tumoral effects.


Asunto(s)
Neoplasias de la Mama , Euphorbia , Triterpenos , Humanos , Femenino , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Euphorbia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico , Transducción de Señal , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Triterpenos/farmacología , Triterpenos/uso terapéutico , Línea Celular Tumoral
15.
Res Pharm Sci ; 18(1): 89-99, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36846732

RESUMEN

Background and purpose: Irritable bowel syndrome (IBS) is a disease that shows its impacts on many populations worldwide. It is known as a functional disorder of the gastrointestinal tract followed by diarrhea and fecal inconsistency. Due to the lack of treatment in the allopathic medicine system for IBS, people in the western world use different herbs as alternative medicine. In the present study, we evaluated the dried extract of Dracocephalum kotschyi against IBS. Experimental approach: In a randomized, double-blinded, placebo-controlled clinical trial, 76 diarrhea-predominant IBS patients were randomly assigned to two equal groups: the control group (given the placebo capsule containing 250 mg of dibasic calcium phosphate) and the treatment groups (given the capsule containing 75 mg of the dry extract of D. kotschyi and 175 mg of dibasic calcium phosphate as filler). The study was conducted based on Rome III criteria. We studied symptoms included in Rome III criteria and divided the study into the duration of drug administration and four weeks after drug administration. These groups were compared with those of the control group. Findings/Results: Significant improvements were found in the quality of life, temperament, and IBS symptoms throughout the treatment duration. Quality of life, temperature, and IBS symptoms were slightly decreased in the treatment group 4 weeks after stopping the treatment. While concluding the study, we found D. kotschyi effective against IBS. Conclusion and implications: Whole extract of D. kotschyi modulated symptoms of IBS patients and improved their quality of life.

16.
Protoplasma ; 260(3): 967-985, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36526928

RESUMEN

Ducrosia anethifolia (DC.) Boiss. is an aromatic medicinal plant that has been traditionally used as an analgesic to treat headaches, backaches, colic, and cold. This study evaluated the yield, physiological, and phytochemical traits of 24 populations for 2 consecutive years under the water stress condition. The seed yield and physiological traits demonstrated the highest values in the first and second year, respectively. Hydrogen peroxide (H2O2), proline, malondialdehyde (MDA), and antioxidant activity enzymes were elevated, while chlorophyll, carotenoids, relative water content (RWC), and yield decreased under drought stress. High-performance liquid chromatography (HPLC) was also applied to assess the changes in some polyphenolic compounds in response to water stress. The increase in some phenolic compounds, such as p-coumaric acid, was recorded due to drought stress, while there was a decrease in flavonoids, that is luteolin and quercetin. Among the populations, Abarkuh2 indicated the highest increase in p-coumaric acid (96%) in response to drought stress. In general, high diversity among the studied populations provides new insights into choosing the beneficial populations for medicinal and food purposes. HIGHLIGHTS: • Changes in polyphenolics of Moshgak populations were obtained in response to water stress. • Gallic acid, ferulic acid, p-coumaric acid and vanillic acid were the major components. • The phenolic compounds was increased due to drought stress while flavonoids were decreased High variation was obtained between Moshgak populations.


Asunto(s)
Sequías , Peróxido de Hidrógeno , Humanos , Deshidratación , Antioxidantes , Flavonoides , Fenoles , Estrés Fisiológico
17.
J Fungi (Basel) ; 10(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38248927

RESUMEN

This study aimed to evaluate the effectiveness of essential oil extracted from celery (Apium graveolens) seeds (CSEO) for the control of powdery mildew of cucumber (Cucumis sativus) incited by Podosphaera fusca and to investigate the metabolic and genetic defense mechanisms triggered by the treatment with this essential oil in cucumber seedlings. The main compounds in the CSEO as determined by gas chromatography-mass spectrometry (GC-MS) analysis were d-limonene, 3-butyl phthalide, ß-selinene, and mandelic acid. The treatment with CSEO led to an increase in the content of both chlorophyll and phenolic/flavonoid compounds in cucumber leaves. In greenhouse tests, the application of CSEO reduced by 60% the disease severity on leaves of cucumber plants and stimulated the activity of defense-related enzymes such as ß-1,3-glucanase, chitinase, phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase. Moreover, treatment with CSEO induced overexpression of ß-1,3-glucanase, chitinase, and phenylalanine ammonia-lyase genes. A highly significant correlation was found between the ß-1,3-glucanase, chitinase, and phenylalanine ammonia-lyase enzymatic activities and the relative expression of the corresponding encoding genes in both inoculated and non-inoculated cucumber seedlings treated with the essential oil. Overall, this study showed that CSEO is a promising eco-friendly candidate fungicide that can be exploited to control cucumber powdery mildew.

18.
Complement Ther Clin Pract ; 49: 101654, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36274534

RESUMEN

BACKGROUND: One of the first goals of reducing the risk of cardiovascular disease (CVD) is to achieve effective therapies for hyperlipidemia. This study aimed to investigate the effect of Allium hirtifolium bulbs on serum lipid profile in patients with hyperlipidemia. METHODS: This clinical trial was conducted on hyperlipidemic patients in two drug (Allium; n = 25) and placebo (n = 24) groups. The first group received 500 mg of A. hirtifolium bulbs twice daily for 6 weeks, while the second group received placebo for the same frequency and duration. Cholesterol, triglycerides (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), fasting blood sugar (FBS), creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were measured at the beginning and the end of study and were compared between the groups. RESULTS: A. hirtifolium reduced total cholesterol and LDL significantly compared to the placebo (P < 0.05). However, no significant effects on other parameters were observed. Furthermore, the use of A. hirtifolium had no effects on renal and liver function tests. CONCLUSION: The use of A. hirtifolium bulbs can decrease serum total cholesterol and LDL in hyperlipidemic adult patients.


Asunto(s)
Allium , Hiperlipidemias , Adulto , Humanos , Hiperlipidemias/tratamiento farmacológico , Triglicéridos , Método Doble Ciego , Colesterol
19.
Iran J Pharm Res ; 21(1): e127028, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36060915

RESUMEN

Euphorbia is used in traditional medicine to remove warts, possibly due to its cytotoxic or antiviral effects. This study investigated its phytochemistry and bioactive compounds. Euphorbia aleppica from the Euphorbiaceae family was collected from Kuhdasht, Lorestan, Iran. Plant material was dried and ground. Extraction was performed by maceration using a dichloromethane-acetone solvent. After removing fatty contents, fractionation was done by open column chromatography. Based on the initial H-NMR spectra, fractions containing diterpenoid compounds were identified. The Sephadex column and HPLC performed isolation. The HPLC was done with a regular YMC silica column using a hexane: Ethyl acetate (70: 30) solvent. The selected sub-fractions were identified by one and two-dimensional corelative NMR spectra. Accurate mass spectra confirmed the molecular formula of the obtained structures. Cytotoxicity was assessed using a standard MTT assay against breast cancer cells. The NMR and mass analysis identified compound 1 as a newly described and compound 2 as a pre-defined compound as 3, 7, 15ß-triacetyl-5α-tigliate-13(17)-α-epoxy-14-oxopremyrsinane and 3, 7, 14, 15, 17-pentaacetyl-5-tigliate-13(17)-epoxypremyrsinane, respectively. Compound 1 showed moderate cytotoxicity, and compound 2 exhibited a potent cytotoxic effect dose-dependently against MCF-7 and MDA-MB 231 breast cancer cells, probably because of 14-O-acetyl and 17-O-acetylated hemiacetal groups.

20.
Iran Biomed J ; 26(4): 330-9, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36029169

RESUMEN

Background: Multiple sclerosis (MS) is the most prevalent neurological disability of young adults. Anti-inflammatory drugs have relative effects on MS. The anti-inflammatory and antioxidative effects of Zingiber officinale (ginger) have been proven in some experimental and clinical investigations. The aim of this study was to evaluate the effects of ginger extract on preventing myelin degradation in a rat model of MS. Methods: Forty nine male Wistar rats were used in this study and divided into four control groups: the normal group, cuprizone-induced group, sham group (cuprizone [CPZ] + sodium carboxymethyl cellulose [NaCMC]), standard control group (fingolimod + cuprizone), including three experimental groups of CPZ, each receiving three different doses of ginger extract: 150, 300, and 600mg/kg /kg/day. Results: Ginger extract of 600 mg/kg prevented corpus callosum from demyelination; however, a significant difference was observed in the fingolimod group (p < 0.05). Difference in the CPZ group was quite significant (p < 0.05). Conclusion: Treatment with ginger inhibited demyelination and alleviated remyelination of corpus callosum in rats. Therefore, it could serve as a therapeutic agent in the MS.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Zingiber officinale , Animales , Antiinflamatorios/uso terapéutico , Cuerpo Calloso/metabolismo , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/prevención & control , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...