Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(10): e3002333, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37824452

RESUMEN

The ability to perform genomic sequencing on long-dead organisms is opening new frontiers in evolutionary research. These opportunities are especially notable in the case of museum collections, from which countless documented specimens may now be suitable for genomic analysis-if data of sufficient quality can be obtained. Here, we report 25 newly sequenced genomes from museum specimens of the model organism Drosophila melanogaster, including the oldest extant specimens of this species. By comparing historical samples ranging from the early 1800s to 1933 against modern-day genomes, we document evolution across thousands of generations, including time periods that encompass the species' initial occupation of northern Europe and an era of rapidly increasing human activity. We also find that the Lund, Sweden population underwent local genetic differentiation during the early 1800s to 1933 interval (potentially due to drift in a small population) but then became more similar to other European populations thereafter (potentially due to increased migration). Within each century-scale time period, our temporal sampling allows us to document compelling candidates for recent natural selection. In some cases, we gain insights regarding previously implicated selection candidates, such as ChKov1, for which our inferred timing of selection favors the hypothesis of antiviral resistance over insecticide resistance. Other candidates are novel, such as the circadian-related gene Ahcy, which yields a selection signal that rivals that of the DDT resistance gene Cyp6g1. These insights deepen our understanding of recent evolution in a model system, and highlight the potential of future museomic studies.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Humanos , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Resistencia a los Insecticidas/genética , Genoma de los Insectos/genética , Demografía
2.
J Hered ; 109(3): 253-263, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29036328

RESUMEN

Secondary freshwater fish species inhabiting fluctuating and extreme environments are susceptible to changes in dispersion, effective population size, and genetic structure. The Iberian toothcarp Aphanius iberus is an endemic cyprinodontid of the Iberian Peninsula restricted to brackish water of salt marshes and coastal lagoons on the eastern Spanish Mediterranean coast. In this study, we analyzed mitochondrial cytochrome b (cyt b) DNA and microsatellite variation to evaluate ways in which the processes of extinction, dispersal, and colonization of A. iberus across its geographic distribution have affected its population genetic structure over time and space. The A. iberus network reconstruction indicated subtle levels of phylogeographic structuring. This, combined with substantial mitochondrial DNA (mtDNA) genetic diversity, suggests that Pleistocene glaciations had a lesser effect on the demographic structure of its populations than was the case for Iberian freshwater species with a similar distribution. Haplotype network, hierarchical analysis of molecular variance, and pairwise ΦST comparisons involving some Levantine samples showed a relatively high degree of mtDNA differentiation, which could be explained by historical isolation of the Villena Lagoon population. Conversely, significant genetic differentiation that follows an isolation-by-distance pattern, and a reduction in Ne though time was detected with microsatellites, suggesting extensive habitat fragmentation on the Mediterranean coast of the Iberian Peninsula over the past hundreds of years. At a smaller geographical scale (Mar Menor Lagoon), habitat fragmentation, probably due to human activity, appears to have resulted in substantially reduced migration and increased genetic drift, as shown by expanded genetic differentiation of populations.


Asunto(s)
Variación Genética , Peces Killi/genética , Animales , Teorema de Bayes , Citocromos b/genética , ADN Mitocondrial/genética , Proteínas de Peces/genética , Flujo Génico , Genética de Población , Haplotipos , Repeticiones de Microsatélite , Filogeografía , España
3.
Mol Phylogenet Evol ; 62(3): 1013-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22178361

RESUMEN

The group of small poor cods and pouts from the genus Trisopterus, belonging to the Gadidae family, comprises four described benthopelagic species that occur across the North-eastern Atlantic, from the Baltic Sea to the coast of Morocco, and the Mediterranean. Here, we combined molecular data from mitochondrial (cytochrome b) and nuclear (rhodopsin) genes to confirm the taxonomic status of the described species and to disentangle the evolutionary history of the genus. Our analyses supported the monophyly of the genus Trisopterus and confirmed the recently described species Trisopterus capelanus. A relaxed molecular clock analysis estimated an Oligocene origin for the group (~30 million years ago; mya) indicating this genus as one of the most ancestral within the Gadidae family. The closure and re-opening of the Strait of Gibraltar after the Messinian Salinity Crisis (MSC) probably triggered the speciation process that resulted in the recently described T. capelanus.


Asunto(s)
Evolución Biológica , Gadiformes/clasificación , Gadiformes/genética , Proteínas de Fase Aguda/genética , Animales , Citocromos b/genética , ADN Mitocondrial , Demografía , Variación Genética , Filogenia , Filogeografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...