Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7281, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949857

RESUMEN

AAA+ proteases degrade intracellular proteins in a highly specific manner. E. coli ClpXP, for example, relies on a C-terminal ssrA tag or other terminal degron sequences to recognize proteins, which are then unfolded by ClpX and subsequently translocated through its axial channel and into the degradation chamber of ClpP for proteolysis. Prior cryo-EM structures reveal that the ssrA tag initially binds to a ClpX conformation in which the axial channel is closed by a pore-2 loop. Here, we show that substrate-free ClpXP has a nearly identical closed-channel conformation. We destabilize this closed-channel conformation by deleting residues from the ClpX pore-2 loop. Strikingly, open-channel ClpXP variants degrade non-native proteins lacking degrons faster than the parental enzymes in vitro but degraded GFP-ssrA more slowly. When expressed in E. coli, these open channel variants behave similarly to the wild-type enzyme in assays of filamentation and phage-Mu plating but resulted in reduced growth phenotypes at elevated temperatures or when cells were exposed to sub-lethal antibiotic concentrations. Thus, channel closure is an important determinant of ClpXP degradation specificity.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatasas/metabolismo , Endopeptidasa Clp/metabolismo , Proteolisis , Translocación Genética
2.
Proc Natl Acad Sci U S A ; 120(6): e2219044120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730206

RESUMEN

Energy-dependent protein degradation by the AAA+ ClpXP protease helps maintain protein homeostasis in bacteria and eukaryotic organelles of bacterial origin. In Escherichia coli and many other proteobacteria, the SspB adaptor assists ClpXP in degrading ssrA-tagged polypeptides produced as a consequence of tmRNA-mediated ribosome rescue. By tethering these incomplete ssrA-tagged proteins to ClpXP, SspB facilitates their efficient degradation at low substrate concentrations. How this process occurs structurally is unknown. Here, we present a cryo-EM structure of the SspB adaptor bound to a GFP-ssrA substrate and to ClpXP. This structure provides evidence for simultaneous contacts of SspB and ClpX with the ssrA tag within the tethering complex, allowing direct substrate handoff concomitant with the initiation of substrate translocation. Furthermore, our structure reveals that binding of the substrate·adaptor complex induces unexpected conformational changes within the spiral structure of the AAA+ ClpX hexamer and its interaction with the ClpP tetradecamer.


Asunto(s)
Proteínas Portadoras , Proteínas de Escherichia coli , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Especificidad por Sustrato
3.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168193

RESUMEN

AAA+ proteolytic machines unfold proteins prior to degradation. Cryo-EM of a ClpXP-substrate complex reveals a postulated but heretofore unseen intermediate in substrate unfolding/degradation. The natively folded substrate is drawn tightly against the ClpX channel by interactions between axial pore loops and the substrate degron tail, and by contacts with the native substrate that are, in part, enabled by movement of one ClpX subunit out of the typically observed hexameric spiral.

4.
J Biol Chem ; 298(1): 101395, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34762912

RESUMEN

Branching enzymes (BEs) are essential in the biosynthesis of starch and glycogen and play critical roles in determining the fine structure of these polymers. The substrates of these BEs are long carbohydrate chains that interact with these enzymes via multiple binding sites on the enzyme's surface. By controlling the branched-chain length distribution, BEs can mediate the physiological properties of starch and glycogen moieties; however, the mechanism and structural determinants of this specificity remain mysterious. In this study, we identify a large dodecaose binding surface on rice BE I (BEI) that reaches from the outside of the active site to the active site of the enzyme. Mutagenesis activity assays confirm the importance of this binding site in enzyme catalysis, from which we conclude that it is likely the acceptor chain binding site. Comparison of the structures of BE from Cyanothece and BE1 from rice allowed us to model the location of the donor-binding site. We also identified two loops that likely interact with the donor chain and whose sequences diverge between plant BE1, which tends to transfer longer chains, and BEIIb, which transfers exclusively much shorter chains. When the sequences of these loops were swapped with the BEIIb sequence, rice BE1 also became a short-chain transferring enzyme, demonstrating the key role these loops play in specificity. Taken together, these results provide a more complete picture of the structure, selectivity, and activity of BEs.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Cyanothece , Oryza , Enzima Ramificadora de 1,4-alfa-Glucano/química , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Glucógeno , Oryza/enzimología , Oryza/metabolismo , Almidón/biosíntesis , Relación Estructura-Actividad
5.
J Am Chem Soc ; 143(37): 15091-15102, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34516091

RESUMEN

The incredible potential for fluorescent proteins to revolutionize biology has inspired the development of a variety of design strategies to address an equally broad range of photophysical characteristics, depending on potential applications. Of these, fluorescent proteins that simultaneously exhibit high quantum yield, red-shifted emission, and wide separation between excitation and emission wavelengths (Large Stokes Shift, LSS) are rare. The pursuit of LSS systems has led to the formation of a complex, obtained from the marriage of a rationally engineered protein (human cellular retinol binding protein II, hCRBPII) and different fluorogenic molecules, capable of supporting photobase activity. The large increase in basicity upon photoexcitation leads to protonation of the fluorophore in the excited state, dramatically red-shifting its emission, leading to an LSS protein/fluorophore complex. Essential for selective photobase activity is the intimate involvement of the target protein structure and sequence that enables Excited State Proton Transfer (ESPT). The potential power and usefulness of the strategy was demonstrated in live cell imaging of human cell lines.


Asunto(s)
Proteínas Luminiscentes/química , Ingeniería de Proteínas , Ácido Glutámico/química , Células HeLa , Humanos , Procesos Fotoquímicos
6.
Cell Metab ; 33(8): 1655-1670.e8, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34015269

RESUMEN

How amphipathic phospholipids are shuttled between the membrane bilayer remains an essential but elusive process, particularly at the endoplasmic reticulum (ER). One prominent phospholipid shuttling process concerns the biogenesis of APOB-containing lipoproteins within the ER lumen, which may require bulk trans-bilayer movement of phospholipids from the cytoplasmic leaflet of the ER bilayer. Here, we show that TMEM41B, present in the lipoprotein export machinery, encodes a previously conceptualized ER lipid scramblase mediating trans-bilayer shuttling of bulk phospholipids. Loss of hepatic TMEM41B eliminates plasma lipids, due to complete absence of mature lipoproteins within the ER, but paradoxically also activates lipid production. Mechanistically, scramblase deficiency triggers unique ER morphological changes and unsuppressed activation of SREBPs, which potently promotes lipid synthesis despite stalled secretion. Together, this response induces full-blown nonalcoholic hepatosteatosis in the TMEM41B-deficient mice within weeks. Collectively, our data uncovered a fundamental mechanism safe-guarding ER function and integrity, dysfunction of which disrupts lipid homeostasis.


Asunto(s)
Retículo Endoplásmico , Fosfolípidos , Animales , Retículo Endoplásmico/metabolismo , Homeostasis , Lipogénesis , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Fosfolípidos/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850023

RESUMEN

The autophagy protein ATG2, proposed to transfer bulk lipid from the endoplasmic reticulum (ER) during autophagosome biogenesis, interacts with ER residents TMEM41B and VMP1 and with ATG9, in Golgi-derived vesicles that initiate autophagosome formation. In vitro assays reveal TMEM41B, VMP1, and ATG9 as scramblases. We propose a model wherein membrane expansion results from the partnership of a lipid transfer protein, moving lipids between the cytosolic leaflets of apposed organelles, and scramblases that reequilibrate the leaflets of donor and acceptor organelle membranes as lipids are depleted or augmented. TMEM41B and VMP1 are implicated broadly in lipid homeostasis and membrane dynamics processes in which their scrambling activities likely are key.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Autofagosomas/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/fisiología , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Modelos Biológicos , Modelos Teóricos , Biogénesis de Organelos , Proteínas de Transferencia de Fosfolípidos/fisiología
8.
Chembiochem ; 21(22): 3192-3196, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32608180

RESUMEN

Domain-swapping is a mechanism for evolving new protein structure from extant scaffolds, and has been an efficient protein-engineering strategy for tailoring functional diversity. However, domain swapping can only be exploited if it can be controlled, especially in cases where various folds can coexist. Herein, we describe the structure of a domain-swapped trimer of the iLBP family member hCRBPII, and suggest a mechanism for domain-swapped trimerization. It is further shown that domain-swapped trimerization can be favored by strategic installation of a disulfide bond, thus demonstrating a strategy for fold control. We further show the domain-swapped trimer to be a useful protein design template by installing a high-affinity metal binding site through the introduction of a single mutation, taking advantage of its threefold symmetry. Together, these studies show how nature can promote oligomerization, stabilize a specific oligomer, and generate new function with minimal changes to the protein sequence.


Asunto(s)
Ingeniería de Proteínas , Proteínas Celulares de Unión al Retinol/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína
9.
J Phys Chem Lett ; 11(11): 4245-4252, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32374610

RESUMEN

The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 displays a 15-cis to all-trans conversion of retinal protonated Schiff base (rPSB) and all-trans to 15-cis isomerization of unprotonated Schiff base (rUSB). Here we use hybrid quantum mechanics/molecular mechanics (QM/MM) tools coupled with transient absorption and cryokinetic UV-vis spectroscopies to investigate these isomerization processes. The results suggest that primary rPSB photoisomerization of M2 occurs around the C13═C14 double bond within 2 ps following an aborted-bicycle pedal (ABP) isomerization mechanism similar to natural microbial rhodopsins. The rUSB isomerization is much slower and occurs within 48 ps around the C15═N double bond. Our findings reveal the possibility to engineer naturally occurring mechanistic features into artificial rhodopsins and also constitute a step toward understanding the photoisomerization of UV pigments. We conclude by reinforcing the idea that the presence of the retinal chromophore inside a tight protein cavity is not mandatory to exhibit ABP mechanism.


Asunto(s)
Rodopsina/química , Rodopsina/efectos de la radiación , Isomerismo , Luz , Teoría Cuántica , Receptores de Ácido Retinoico , Bases de Schiff/química , Análisis Espectral/métodos
10.
J Am Chem Soc ; 141(43): 17125-17132, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31557439

RESUMEN

Protein conformational switches or allosteric proteins play a key role in the regulation of many essential biological pathways. Nonetheless, the implementation of protein conformational switches in protein design applications has proven challenging, with only a few known examples that are not derivatives of naturally occurring allosteric systems. We have discovered that the domain-swapped (DS) dimer of hCRBPII undergoes a large and robust conformational change upon retinal binding, making it a potentially powerful template for the design of protein conformational switches. Atomic resolution structures of the apo- and holo-forms illuminate a simple, mechanical movement involving sterically driven torsion angle flipping of two residues that drive the motion. We further demonstrate that the conformational "readout" can be altered by addition of cross-domain disulfide bonds, also visualized at atomic resolution. Finally, as a proof of principle, we have created an allosteric metal binding site in the DS dimer, where ligand binding results in a reversible 5-fold loss of metal binding affinity. The high resolution structure of the metal-bound variant illustrates a well-formed metal binding site at the interface of the two domains of the DS dimer and confirms the design strategy for allosteric regulation.


Asunto(s)
Ingeniería de Proteínas/métodos , Proteínas Celulares de Unión al Retinol/química , Proteínas Celulares de Unión al Retinol/metabolismo , Regulación Alostérica , Sitios de Unión , Dicroismo Circular , Cristalografía por Rayos X , Disulfuros/química , Ligandos , Metales/metabolismo , Modelos Moleculares , Mutación , Dominios Proteicos , Multimerización de Proteína , Proteínas Celulares de Unión al Retinol/genética , Treonina/genética , Tirosina/genética , Zinc/metabolismo
11.
J Am Chem Soc ; 141(4): 1735-1741, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30580520

RESUMEN

Bacteriorhodopsin represents the simplest, and possibly most abundant, phototropic system requiring only a retinal-bound transmembrane protein to convert photons of light to an energy-generating proton gradient. The creation and interrogation of a microbial rhodopsin mimic, based on an orthogonal protein system, would illuminate the design elements required to generate new photoactive proteins with novel function. We describe a microbial rhodopsin mimic, created using a small soluble protein as a template, that specifically photoisomerizes all- trans to 13- cis retinal followed by thermal relaxation to the all- trans isomer, mimicking the bacteriorhodopsin photocycle, in a single crystal. The key element for selective isomerization is a tuned steric interaction between the chromophore and protein, similar to that seen in the microbial rhodopsins. It is further demonstrated that a single mutation converts the system to a protein photoswitch without chromophore photoisomerization or conformational change.


Asunto(s)
Bacteriorodopsinas/química , Biomimética , Bacteriorodopsinas/metabolismo , Luz , Modelos Moleculares , Movimiento , Conformación Proteica , Estereoisomerismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...