Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Tomography ; 9(1): 274-284, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36828374

RESUMEN

While the advent of immunotherapy has revolutionized cancer treatment, its use in the treatment of glioblastoma (GBM) has been less successful. Most studies using immunotherapy in GBM have been negative and the reasons for this are still being studied. In clinical practice, interpreting response to immunotherapy has been challenging, particularly when trying to differentiate between treatment-related changes (i.e., pseudoprogression) or true tumor progression. T cell tagging is one promising technique to noninvasively monitor treatment efficacy by assessing the migration, expansion, and engagement of T cells and their ability to target tumor cells at the tumor site.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Linfocitos T/patología , Neoplasias Encefálicas/patología , Inmunoterapia/métodos , Inmunidad
2.
Neurooncol Adv ; 5(1): vdac185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36751672

RESUMEN

Background: Chimeric antigen receptor (CAR) T cells have achieved remarkable responses in patients with hematological malignancies; however, the potential of this therapeutic platform for solid tumors like glioblastoma (GBM) has been limited, due in large part to the targeting of single antigens in a heterogeneous disease. Strategies that allow CAR T cells to engage multiple antigens concomitantly may broaden therapeutic responses and mitigate the effects of immune escape. Methods: Here we have developed a novel, dual-specific, tandem CAR T (TanCART) cell with the ability to simultaneously target both EGFRvIII and IL-13Rα2, two well-characterized tumor antigens that are frequently found on the surface of GBM cells but completely absent from normal brain tissues. We employed both standard immunological assays and multiple orthotopic preclinical models including patient-derived xenograft to demonstrate efficacy of this approach against heterogeneous tumors. Results: Tandem CAR T cells displayed enhanced cytotoxicity in vitro against heterogeneous GBM populations, including patient-derived brain tumor cultures (P < .05). Compared to CAR T cells targeting single antigens, dual antigen engagement through the tandem construct was necessary to achieve long-term, complete, and durable responses in orthotopic murine models of heterogeneous GBM, including patient-derived xenografts (P < .05). Conclusions: We demonstrate that TanCART is effective against heterogeneous tumors in the brain. These data lend further credence to the development of multi-specific CAR T cells in the treatment of GBM and other cancers.

3.
J Immunother Cancer ; 10(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35017151

RESUMEN

BACKGROUND: The powerful 'graft versus leukemia' effect thought partly responsible for the therapeutic effect of allogeneic hematopoietic cell transplantation in acute myeloid leukemia (AML) provides rationale for investigation of immune-based therapies in this high-risk blood cancer. There is considerable preclinical evidence for potential synergy between PD-1 immune checkpoint blockade and the hypomethylating agents already commonly used for this disease. METHODS: We report here the results of 17 H-0026 (PD-AML, NCT02996474), an investigator sponsored, single-institution, single-arm open-label 10-subject pilot study to test the feasibility of the first-in-human combination of pembrolizumab and decitabine in adult patients with refractory or relapsed AML (R-AML). RESULTS: In this cohort of previously treated patients, this novel combination of anti-PD-1 and hypomethylating therapy was feasible and associated with a best response of stable disease or better in 6 of 10 patients. Considerable immunological changes were identified using T cell receptor ß sequencing as well as single-cell immunophenotypic and RNA expression analyses on sorted CD3+ T cells in patients who developed immune-related adverse events (irAEs) during treatment. Clonal T cell expansions occurred at irAE onset; single-cell sequencing demonstrated that these expanded clones were predominately CD8+ effector memory T cells with high cell surface PD-1 expression and transcriptional profiles indicative of activation and cytotoxicity. In contrast, no such distinctive immune changes were detectable in those experiencing a measurable antileukemic response during treatment. CONCLUSION: Addition of pembrolizumab to 10-day decitabine therapy was clinically feasible in patients with R-AML, with immunological changes from PD-1 blockade observed in patients experiencing irAEs.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Decitabina/uso terapéutico , Inmunoterapia/métodos , Leucemia Mieloide Aguda/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Estudios de Cohortes , Decitabina/farmacología , Femenino , Humanos , Masculino , Proyectos Piloto , Recurrencia
5.
Blood Adv ; 4(2): 367-379, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31985806

RESUMEN

Acute myeloid leukemia (AML) is a genetically heterogeneous disease that is characterized by abnormal clonal proliferation of myeloid progenitor cells found predominantly within the bone marrow (BM) and blood. Recent studies suggest that genetic and phenotypic alterations in the BM microenvironment support leukemogenesis and allow leukemic cells to survive and evade chemotherapy-induced death. However, despite substantial evidence indicating the role of tumor-host interactions in AML pathogenesis, little is known about the complex microenvironment of the BM. To address this, we performed novel proteomic profiling of the noncellular compartment of the BM microenvironment in patients with AML (n = 10) and age- and sex-matched healthy control subjects (n = 10) using an aptamer-based, highly multiplexed, affinity proteomics platform (SOMAscan). We show that proteomic assessment of blood or RNA-sequencing of BM are suboptimal alternate screening strategies to determine the true proteomic composition of the extracellular soluble compartment of AML patient BM. Proteomic analysis revealed that 168 proteins significantly differed in abundance, with 91 upregulated and 77 downregulated in leukemic BM. A highly connected signaling network of cytokines and chemokines, including IL-8, was found to be the most prominent proteomic signature associated with AML in the BM microenvironment. We report the first description of significantly elevated levels of the myelosuppressive chemokine CCL23 (myeloid progenitor inhibitory factor-1) in both AML and myelodysplastic syndrome patients and perform functional experiments supportive of a role in the suppression of normal hematopoiesis. This unique paired RNA-sequencing and proteomics data set provides innovative mechanistic insights into AML and healthy aging and should serve as a useful public resource.


Asunto(s)
Médula Ósea/patología , Leucemia Mieloide Aguda/patología , Proteómica/métodos , Estudios de Casos y Controles , Microambiente Celular , Quimiocinas/análisis , Quimiocinas CC/metabolismo , Citocinas/análisis , Regulación Leucémica de la Expresión Génica , Humanos , Interleucina-8/metabolismo , Proteínas de Neoplasias/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...