Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 838(Pt 2): 156181, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35618131

RESUMEN

Viticulture is gradually shifting to more sustainable production systems and a fair number of studies aim at assessing the environmental impacts of different technologies and techniques adopted in the wine production through the Life Cycle Assessment approach. The main environmental issues identified are on water, soil and energy use, management of organic and inorganic solid waste streams, greenhouse gas emissions and use of chemicals. Precision viticulture (PV) techniques can play an important role in the sustainable use of water and fertilizers in grape production, thanks to the site-specific application of these inputs, improving yield and quality of grapes while minimizing negative effects on the environment. However, PV often implies investments and additional management costs. The objective of this study is to compare different strategies for the management of water and fertilizers in vineyards, ranging from the conventional ones to the most technologically advanced, to assess their sustainability both from an economic and an environmental point of view. Six scenarios have been explored, considering different irrigation water supply systems, and irrigation and fertilizer management strategies. A multidisciplinary approach, including Life Cycle Assessment, economic assessment and multivariate analysis was used to assess the sustainability of the different vineyard management approaches. The results show the higher economic and environmental sustainability for the scenario considering irrigation water supplied from an irrigation consortium, a variable rate drip irrigation system for irrigation and fertigation. Finally, also according to PCA results, at least for the scenarios explored in the study, the introduction of PV technologies led to the reduction of environmental impacts and to the increase in economic advantages, which showed to be inversely correlated.


Asunto(s)
Fertilizantes , Vitis , Agricultura/métodos , Granjas , Fertilizantes/análisis , Suelo , Agua
2.
Environ Monit Assess ; 187(9): 586, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26307688

RESUMEN

The cultivation of rice, one of the most important staple crops worldwide, has very high water requirements. A variety of irrigation practices are applied, whose pros and cons, both in terms of water productivity and of their effects on the environment, are not completely understood yet. The continuous monitoring of irrigation and rainfall inputs, as well as of soil water dynamics, is a very important factor in the analysis of these practices. At the same time, however, it represents a challenging and costly task because of the complexity of the processes involved, of the difference in nature and magnitude of the driving variables and of the high variety of field conditions. In this paper, we present the prototype of an integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes. The system consists of the following: (1) flow measurement devices for the monitoring of irrigation supply and tailwater drainage; (2) piezometers for groundwater level monitoring; (3) level gauges for monitoring the flooding depth; (4) multilevel tensiometers and moisture sensor clusters to monitor soil water status; (5) eddy covariance station for the estimation of evapotranspiration fluxes and (6) wireless transmission devices and software interface for data transfer, storage and control from remote computer. The system is modular and it is replicable in different field conditions. It was successfully applied over a 2-year period in three experimental plots in Northern Italy, each one with a different water management strategy. In the paper, we present information concerning the different instruments selected, their interconnections and their integration in a common remote control scheme. We also provide considerations and figures on the material and labour costs of the installation and management of the system.


Asunto(s)
Agricultura/métodos , Oryza , Agua , Inundaciones , Agua Subterránea , Italia , Programas Informáticos , Suelo/química , Tecnología Inalámbrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA