Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem X ; 22: 101261, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38486619

RESUMEN

In this study, polymer solution casting was utilized to fabricate a multilayer film with ethylcellulose (EC) as the outer layers and trans-cinnamaldehyde-loaded pectin as the inner layer. A significant increase in whiteness and UV-visible light blocking capability and a remarkable decrease in total color difference and yellowness of the films were seen via increasing the thickness of EC outer layers. Scanning electronic microscopy observation showed that the inner and outer layers had a smooth and uniform surfaces with clear boundary. The thicker film has better stretchability and strength, but is less flexible than thinner film. Glass transition temperature did not change remarkably with increasing thickness of EC outer layers, but thermal stability was slightly improved. FTIR-ATR spectra revealed the formation of hydrogen bonds between the two adjacent layers. The multilayer films exhibited excellent antimicrobial efficacy against Gram-positive and Gram-negative foodborne pathogens. The results suggested that this multilayer film has potential applications in active food packaging.

2.
Int J Food Microbiol ; 416: 110676, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507974

RESUMEN

Listeria monocytogenes biofilms present a significant challenge in the food industry. This study explores the impact of different acidic conditions of culture media and food matrices on the development and removal of biofilms developed on stainless steel surfaces by wild-type (WT) L. monocytogenes strains as well as in two mutant derivatives, ΔsigB and ΔagrA, that have defects in the general stress response and quorum sensing, respectively. Additionally, the study investigates the efficacy of nanoencapsulated carvacrol as an antimicrobial against L. monocytogenes biofilms developed in Tryptic Soy Broth (TSB) culture media acidified to different pH conditions (3.5, 4.5, 5.5, 6.5), and in food substrates (apple juice, strained yogurt, vegetable soup, semi-skimmed milk) having the same pH levels. No biofilm formation was observed for all L. monocytogenes strains at pH levels of 3.5 and 4.5 in both culture media and food substrates. However, at pH 5.5 and 6.5, increased biofilm levels were observed in both the culture media and food substrates, with the WT strain showing significantly higher biofilm formation (3.04-6.05 log CFU cm-2) than the mutant strains (2.30-5.48 log CFU cm-2). For both applications, the nanoencapsulated carvacrol demonstrated more potent antimicrobial activity against biofilms developed at pH 5.5 with 2.23 to 3.61 log reductions, compared to 1.58-2.95 log reductions at pH 6.5, with mutants being more vulnerable in acidic environments. In food substrates, nanoencapsulated carvacrol induced lower log reductions (1.58-2.90) than the ones in TSB (2.02-3.61). These findings provide valuable insights into the impact of different acidic conditions on the development of L. monocytogenes biofilms on stainless steel surfaces and the potential application of nanoencapsulated carvacrol as a biofilm control agent in food processing environments.


Asunto(s)
Antiinfecciosos , Cimenos , Listeria monocytogenes , Acero Inoxidable/análisis , Biopelículas , Medios de Cultivo , Microbiología de Alimentos , Recuento de Colonia Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA