Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Cell Med ; 12(1): 70-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942263

RESUMEN

Polycystic ovary syndrome is a low-grade inflammatory state with increased serum levels of TNF-α. The present study has compared the inflammatory responses to breast cancer cell lines in women with PCOS with healthy women. Peripheral blood mononuclear cells (PBMCs) isolated from 50 women with PCOS and 50 healthy controls were cultured in the trans-well co-culture system. These cells were stimulated with two distinct breast cancer cell lines. The proliferation of PBMCs, CD3+CD8+T cell percentages, and tumor necrosis factor-alpha (TNF-α) concentration were evaluated after 48 and 72 hours of incubation. TNF-α concentration and the proliferation rate of PBMCs after 48 hours of incubation significantly increased in the PCOS group. However, after 72 hours, TNF-α secretion significantly decreased in the PCOS group. The ability of PBMCs to produce TNF-α decreased gradually in women with PCOS. When the effects of low-grade inflammation and endocrine conditions on the cells decrease, the inability of PBMCs to create an inflammatory response will be altered.

2.
Adv Pharm Bull ; 13(1): 123-133, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36721809

RESUMEN

Purpose: A hemocompatible substrate can offer a wonderful facility for nitric oxide (NO) production by vascular endothelial cells in reaction to the inflammation following injuries. NO inhibits platelet aggregation this is especially critical in small-diameter vessels. Methods: The substrate films were made of polyurethane (PU) in a casting process and after plasma treatments, their surface was chemically decorated with polyethylene glycol (PEG) 2000, gelatin, gelatin-aspirin, gelatin-heparin and gelatin-aspirin-heparin. The concentrations of these ingredients were optimized in order to achieve the biocompatible values and the resulting modifications were characterized by water contact angle and Fourier transform infra-red (FTIR) assays. The values of NO production and platelet adhesion were then examined. Results: The water contact angle of the modified surface was reduced to 26±4∘ and the newly developed hydrophilic chemical groups were confirmed by FTIR. The respective concentrations of 0.05 mg/ml and 100 mg/mL were found to be the IC50 values for aspirin and heparin. However, after the surface modification with aspirin, the bioactivity of the substrate increased in compared to the other experimental groups. In addition, there was a synergistic effect between these reagents for NO synthesis. While, heparin inhibited platelet adhesion more than aspirin. Conclusion: Because of the highly hydrophilic nature of heparin, this reagent was hydrolyzed faster than aspirin and therefore its influence on platelet aggregation and cell growth was greater. Taken together, the results give the biocompatible concentrations of both biomolecules that are required for endothelial cell proliferation, NO synthesis and platelet adhesion.

3.
Anesth Pain Med ; 11(2): e111886, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34336615

RESUMEN

BACKGROUND: Breast cancer (BC) is the most frequent cause of cancer death in women. The thoracic pectoral nerve (PECS) block has been described as the gold standard analgesic modality for BC surgery. It has been previously reported that PECS is associated with decreased BC recurrence post-mastectomy. Although several anesthetic drugs and techniques are used in surgical oncology, their effects on the behavior of cancer cells are yet to be known and the key question of whether the anesthetic technique affects cancer outcome remains unresolved. OBJECTIVES: Since anesthetic drugs and techniques and post-operative pain may affect BC recurrence, this study aimed to determine whether the anesthetic choice and technique, PECS II block, affects in vitro apoptosis of the MDA-MB-231 BC cell line. METHODS: Twenty-two female BC patients, 20 to 75-years-old, with the same pathologic grades were included in this study. The patients were randomly divided into two groups. The first group received propofol general anesthesia (PGA) associated with PECS and the second group received standard PGA. Blood was sampled pre and post-operation from all patients. The sera were isolated and then exposed to the MDA-MB-231 human BC cell line. The mean percentage of apoptosis indices was analyzed by flow cytometry using Annexin V-fluorescein isothiocyanate 24 hours after treatment with patients' sera. RESULTS: A significant decrease was seen in the mean viability percentage of BC cell line in the PECS group, besides a significant increase in the mean percentage of necrosis and late apoptosis indices compared to the control group after exposure to sera collected from patients post-operation. Intra-group analysis of the control group showed that the exposure of the tumoral cell to post-operation sera resulted in a significant increase in the mean percentage of necrosis and late apoptosis index compared to pre-operation sera exposure. In the PECS group, the exposure of the tumoral cell to post-operation sera resulted in a significant increase in the mean percentage of cell viability and late apoptosis index compared to pre-operation sera exposure. CONCLUSIONS: In conclusion, anesthesia and BC surgery may induce apoptosis indices in the MDA-MB-231 human BC cell line. We also found that sera collected from PECS II block patients with BC could induce more apoptosis in the MDA-MB-231 cell line compared to collected sera from systemic analgesia alone after BC surgery.

4.
J Biomed Mater Res A ; 108(7): 1520-1533, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32170903

RESUMEN

Understanding the cellular and molecular toxicity of graphene and its derivatives is essential for their biomedical applications. Herein, gene expression profile of graphene-exposed cells was retrieved from the Gene expression omnibus database. Differentially expressed genes and their functional roles were then investigated through the pathway, protein-protein interaction (PPI) network, and module analysis. High degree (hub) and high betweenness centrality (bottleneck) nodes were subsequently identified. The functional analysis of central genes indicated that these graphene-gene interactions could be of great value for further investigation. Accordingly, we also followed the expression of five hub-bottleneck genes in graphene-treated murine peritoneal macrophages and human breast cancer cell line by real-time PCR. The five hub-bottleneck genes related to graphene cytotoxicity; CDK1, CCNB1, PLK1, TOP2A, and CCNA2 were identified through network analysis, which were highly correlated with regulation of cell cycle processes. The module analysis indicated the cell cycle pathway to be the predominant one. Gene expression evaluation showed downregulation of these genes in the macrophages and cancer cells treated with graphene. These results provided some new intuitions concerning the graphene-cell interactions and unveiled targeting critical cell cycle regulators. The present study indicated some toxic effects of graphene-based materials through systems toxicology assessment. Integrating gene expression and PPI network may help explaining biological responses of graphene and lead to beneficial impacts in nanomedicine.


Asunto(s)
Materiales Biocompatibles/toxicidad , Ciclo Celular/efectos de los fármacos , Grafito/toxicidad , Animales , Línea Celular Tumoral , Células Cultivadas , Biología Computacional , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Mapas de Interacción de Proteínas/efectos de los fármacos , Transcriptoma/efectos de los fármacos
5.
Iran J Pharm Res ; 18(Suppl1): 146-156, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32802095

RESUMEN

Researchers add serum to a classical medium at concentrations of 5 to 10% (v/v) to grow cells in-vitro culture media. Unfortunately, serum is a poorly defined culture medium component as its composition can vary considerably while serum-free cell culture media are an excellent alternative to standard serum-containing media and offer several major advantages. Advantages of using serum-free media include a lower risk of infectious agents, lower risk of interfering components, less contaminant, avoids ethical issues. According to previous studies insulin, selenium, transferrin and glucose are important component of serum that affect cell growth. In the present study, we optimized amount of these factors in order to serum free culture medium fabrication. Response surface methodology (RSM) was employed for optimization of key factors in serum free medium to enhance recombinant human GM-CSF (rhGM-CSF) production in CHO cell line. Four important process parameters including insulin concentration (0-2 g/L), transferrin concentration (0-1 g/L), selenium concentration (0-0.001 g/L) and glucose concentration (0-5 g/L) were optimized to obtain the best response of rhGM-CSF production using the statistical Box-Behnken design. The experimental data obtained were analyzed by analysis of variance (ANOVA) and fitted to a second-order polynomial equation using multiple regression analysis. Numerical optimization applying desirability function was used to identify the optimum conditions for maximum production of rhGM-CSF. The optimum conditions were found to be insulin concentration = 1.1 g/L, transferrin concentration = 0.545 g/L, selenium concentration = 0.000724 g/L and glucose = 1. 4 g/L. Maximum rhGM-CSF production was found to be 3.5 g/L.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...