Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Res Pharm Sci ; 15(4): 390-400, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33312217

RESUMEN

BACKGROUND AND PURPOSE: Ovarian cancer is the deadliest cancer in women. The main challenge in the inhibition of ovarian cancer cells is chemo-resistance. Seeking to overcome this issue, several strategies have been suggested, including the administration of natural products. Grape seed extract (GSE) is a good source of polyphenols and its anticancer effects have been reported by many studies. In this study we aimed to evaluate the effects of GSE on OVCAR-3, a chemo-resistant ovarian cancer line. EXPERIMENTAL APPROACH: OVCAR-3 cells were treated with GSE (71 µg/mL) for 24 and 48 h. Cell viability and cell apoptosis were measured by MTT and flow cytometry. The real-time polymerase chain reaction was used to determine the expression of genes involved in the cell cycle (PTEN, DACT1, AKT, MTOR, GSK3B, C-MYC, CCND1, and CDK4) and apoptosis (BAX, BCl2, CASP3, 8 and 9). The expression of CASP3 protein was evaluated by the CASP3 assay. FINDINGS / RESULTS: The results showed that treatment of OVCAR-3 cells with GSE, increased the expression level of PTEN and DACT1 tumor suppressor genes, as well as apoptotic genes, CASP3, 8, and 9 (P < 0.001). Also, the induction of tumor suppressor genes expression was associated with an increase in the expression of BAX/BCL2 gene ratio as pro- and anti-apoptotic genes. The expression of the genes involved in the cell cycle, CCND1 and CDK4, was inhibited (P < 0.001). The results indicated that GSE induced cell apoptosis in a time-dependent manner (P < 0.001). Also, the GSE treatment resulted in the CASP3 protein expression (P < 0.001). CONCLUSION AND IMPLICATIONS: According to the results of this study, GSE may exert anti-tumorigenic effects on chemo-resistant OVCAR-3 ovarian cancer cells which might be mediated by the expression of tumor suppressor genes that interact with cell signaling pathways, cell cycle, and cell apoptosis. Hence, the consumption of GSE extract during chemotherapy may overcome part of chemo-resistance in ovarian cancer.

2.
Avicenna J Phytomed ; 10(4): 398-406, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850296

RESUMEN

OBJECTIVE: Ionizing radiation induces deleterious effects in the biological systems by producing free radicals. Grape Seed Extract (GSE) as a free radical scavenger could protect the body against the damages. MATERIALS AND METHODS: In this study, 12 healthy male volunteers were divided into Groups 1, 2, 3 and 4 and received 100, 300, 600 and 1000 mg GSE, respectively. Peripheral blood samples were collected from each volunteer 15 min before, and 1, 2, and 5 hr after GSE oral administration. Blood samples were then irradiated with 150 cGy of 100 kvp X-ray (Irradiated control group, was treated with only 1.5 Gy of X-rays). Cytogenic damages were detected by micronucleus assay. RESULTS: Results showed that irradiation significantly increased the incidence of micronuclei (p<0. 001). In group 1, the mean reduction of micronucleus rate was 26.53%, 34.92%, and 31.38%, 1, 2, and 5 hr after GSE ingestion (p<0.001), respectively; this variable in group 2 was 17.38, 38.33, and 31.38 (p<0. 001), in group 3, was 35.65%, 46%, and 37.15% (p<0.001), respectively and in group 4, was 41.35%, 51.73%, and 50.55% (p<0.0001), respectively. The samples collected 1, 2, and 5 hr after ingestion of GSE exhibited a significant decrease in the incidence of micronuclei compared with the radiation control group. The maximum protection and reduction in frequency of micronuclei (51.73%) was observed 2 hr after ingestion of 1000 mg GSE. CONCLUSION: Consumption of GSE before undergoing radiation protects human lymphocytes against X-rays by reducing radiation-induced genotoxicity.

3.
Avicenna J Phytomed ; 6(6): 678-685, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28078248

RESUMEN

OBJECTIVE: Ionizing radiation produces free radicals which induce DNA damage and cell death. Origanum vulgare leaf extract (OVLE) is a natural compound and its capability of scavenging free radicals and its antioxidant activity have been demonstrated by many researchers. In this study, using micronucleus assay, radioprotective effect of OVLE against clastogenic and cytotoxic effect of gamma irradiation has been investigated in mice bone marrow cells. MATERIALS AND METHODS: OVLE was injected intraperitoneally to the BALB/c mice 1hr prior to gamma irradiation (3Gy) at the doses of 100 and 200 mg/kg. Twenty four hours after irradiation or treatment, animals were killed and smears were prepared from the bone marrow cells. The slides were stained with May Grunwald-Giemsa method and analyzed microscopically. The frequency of micronucleated polychromatic erythrocytes (MnPCEs), micronucleated normochromatic erythrocyte (MnNCEs) and cell proliferation ratio PCE/PCE+NCE (polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte) were calculated. RESULTS: The results showed that gamma irradiation (3Gy) increased the frequency of MnPCEs, MnNCEs and reduced the PCE/PCE+NCE ratio in mice bone marrow compared to the non-irradiated control group (p<0.0001). Injection of OVLE significantly reduced the frequency of MnPCEs (p<0.0001) and MnNCEs (p<0.05) and increased the PCE/PCE+NCE ratio as compared to the irradiated control group (p<0.05). CONCLUSION: It seems that OVLE with its antioxidant properties and its capability of scavenging free radicals and reactive oxygen species can reduce the cytotoxic effects of gamma irradiation in mice bone marrow cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA