Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 390: 129864, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839646

RESUMEN

Effective separation of volatile fatty acids (VFAs), ammonia (NH4+-N) and reactive phosphorous (RP) generated from anaerobic fermentation liquid is critically important for efficient resource recovery. Flow-electrode capacitive deionization (FCDI) is proven to be capable of efficient removal of ions, environmentally friendly and cost-effective in operation. The performances of FCDI system in the separation of NH4+-N, RP, and acetate and mechanism of pHs and activated carbon on their performances were investigated. Results showed that a pH of 5.0 promoted the removal of NH4+-N (53.1 %) and RP (39.5 %), and 72.0 % of acetate was retained in the solution, which revealed that removal of NH4+-N and RP, and retention of acetate were evidently affected by speciation of ions. Furthermore, the recovery of NH4+-N and RP was undermined by the adsorption of ions on activated carbon. This study provides a novel insight of ion selective mechanism during the operation of the FCDI system.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Fermentación , Carbón Orgánico , Acetatos , Nutrientes , Electrodos
2.
J Environ Sci (China) ; 87: 93-111, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31791521

RESUMEN

In recent years, volatile fatty acid (VFA) production through anaerobic fermentation of sewage sludge, instead of methane production, has been regarded as a high-value and promising roadmap for sludge stabilization and resource recovery. This review first presents the effects of some essential factors that influence VFA production and composition. In the second part, we present an extensive analysis of conventional pretreatment and co-fermentation strategies ultimately addressed to improving VFA production and composition. Also, the effectiveness of these approaches is summarized in terms of sludge degradation, hydrolysis rate, and VFA production and composition. According to published studies, it is concluded that some pretreatments such as alkaline and thermal pretreatment are the most effective ways to enhance VFA production from sewage sludge. The possible reasons for the improvement of VFA production by different methods are also discussed. Finally, this review also highlights several current technical challenges and opportunities in VFA production with spectrum control, and further related research is proposed.


Asunto(s)
Ácidos Grasos Volátiles , Fermentación , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Hidrólisis , Metano , Aguas del Alcantarillado
3.
Environ Sci Pollut Res Int ; 25(29): 29240-29255, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30117028

RESUMEN

Trace elements (TEs) play an indispensable role in enhancing the stability of anaerobic digestion (AD) of food waste (FW). Significant research on AD of FW with TE supplementation has been conducted with low Fe content inoculum. However, the use of Fe-rich inoculum is inevitable due to chemical phosphorous removal from wastewater in North America. We conducted comprehensive mesophilic batch tests to investigate the effect of TEs (Fe, Ni, Co, Se, and Mo) on FW digestion inoculated with Fe-rich sludge (≥ 1000 mg Fe L-1). This paper presents the impact of supplementing various concentrations of TEs on specific methanogenic activity (SMA), maximum specific methane production rate (SMPRmax), and apparent hydrolysis rate constant (Kh). The addition of TEs adversely impacted methanogenic activity by 20 to 58% in the SMA tests. The effects of individual and mixed supplementation of TEs on the SMPRmax and Kh during FW digestion were negligible; exceptions include Fe, Mo, and Co. Final soluble TE concentrations were 10-29% of the initial soluble TEs. The high Fe concentration in the inoculum reduces the bioavailable fraction of added TEs via coprecipitation. Contrary with many literature reports indicating the need to supplement TE to improve FW digestion efficiency, with Fe-rich sludges, FW digestion does not require TE supplementation.


Asunto(s)
Reactores Biológicos , Hierro/análisis , Eliminación de Residuos/métodos , Aguas del Alcantarillado/análisis , Oligoelementos/análisis , Anaerobiosis , Residuos de Alimentos , Ontario
4.
Water Sci Technol ; 74(11): 2515-2522, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27973356

RESUMEN

Production of biogas from different organic materials is a most interesting source of renewable energy. The biomethane potential (BMP) of these materials has to be determined to get insight in design parameters for anaerobic digesters. Although several norms and guidelines for BMP tests exist, inter-laboratory tests regularly show high variability of BMPs for the same substrate. A workshop was held in June 2015, in Leysin, Switzerland, with over 40 attendees from 30 laboratories around the world, to agree on common solutions to the conundrum of inconsistent BMP test results. This paper presents the consensus of the intense roundtable discussions and cross-comparison of methodologies used in respective laboratories. Compulsory elements for the validation of BMP results were defined. They include the minimal number of replicates, the request to carry out blank and positive control assays, a criterion for the test duration, details on BMP calculation, and last but not least criteria for rejection of the BMP tests. Finally, recommendations on items that strongly influence the outcome of BMP tests such as inoculum characteristics, substrate preparation, test setup, and data analysis are presented to increase the probability of obtaining validated and reproducible results.


Asunto(s)
Biocombustibles/análisis , Metano/análisis , Anaerobiosis , Biotecnología/normas , Laboratorios/normas , Reproducibilidad de los Resultados
5.
Waste Manag ; 53: 156-64, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27172811

RESUMEN

Sewage fine sieved fraction (FSF) is a heterogeneous substrate consisting of mainly toilet paper fibers sequestered from municipal raw sewage by a fine screen. In earlier studies, a maximum biodegradation of 62% and 57% of the sewage FSF was found under thermophilic (55°C) and mesophilic (35°C) conditions, respectively. In order to research this limited biodegradability of sewage FSF, this study investigates the biodegradation of different types of cellulosic fibers-based hygiene papers including virgin fibers based toilet paper (VTP), recycled fiber based toilet paper (RTP), virgin pulp for paper production (VPPP) as a raw material, as well as microcrystalline cellulose (MCC) as a kind of fiberless reference material. The anaerobic biodegradation or digestibility tests were conducted under thermophilic and mesophilic conditions. Results of the experiments showed different biomethane potential (BMP) values for each tested cellulose fiber-based substrate, which might be associated with the physical characteristics of the fibers, type of pulping, presence of lignin encrusted fibers, and/or the presence of additive chemicals and refractory compounds. Higher hydrolysis rates (Kh), higher specific methane production rates (SMPR) and shorter required incubation times to achieve 90% of the BMP (t90%CH4), were achieved under thermophilic conditions for all examined substrates compared to the mesophilic ones. Furthermore, the biodegradability of all employed cellulose fiber-based substrates was in the same range, 38-45%, under both conditions and less than the observed FSF biodegradability, i.e. 57-62%. MCC achieved the highest BMP and biodegradability, 86-91%, among all cellulosic substrates.


Asunto(s)
Papel , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Residuos
6.
Biotechnol Biofuels ; 8: 171, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500697

RESUMEN

BACKGROUND: In this research, the feasibility of, and population dynamics in, one-step anaerobic sequencing batch reactor systems treating the fine sieved fraction (FSF) from raw municipal wastewater was studied under thermophilic (55 °C) and mesophilic (35 °C) conditions. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter (mesh size 350 micron). FSF is a heterogeneous substrate that mainly consists of fibres originating from toilet paper and thus contains a high cellulosic fraction (60-80 % of total solids content), regarded as an energy-rich material. RESULTS: Results of the 656-day fed-batch operation clearly showed that thermophilic digestion was more stable, applying high organic loading rates (OLR) up to 22 kg COD/(m(3) day). In contrast, the mesophilic digester already failed applying an OLR of 5.5 kg COD/(m(3) day), indicated by a drop in pH and increase in volatile fatty acids (VFAs). The observed viscosity values of the mesophilic sludge were more than tenfold higher than the thermophilic sludge. 454-pyrosequencing of eight mesophilic and eight thermophilic biomass samples revealed that Bacteroides and aceticlastic methanogen Methanosaeta were the dominant genera in the mesophilic digester, whereas OP9 lineages, Clostridium and the hydrogenotrophic methanogen Methanothermobacter dominated the thermophilic one. CONCLUSIONS: Our study suggests that applying thermophilic conditions for FSF digestion would result in a higher biogas production rate and/or a smaller required reactor volume, comparing to mesophilic conditions.

7.
Water Res ; 87: 483-93, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25976021

RESUMEN

This study investigates the start-up and operation of bench-scale mesophilic (35 °C) and thermophilic (55 °C) anaerobic sequencing batch reactor (SBR) digesters treating the fine sieved fraction (FSF) from raw municipal sewage. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter equipped with a 350 micron mesh. For the given wastewater, the major component of FSF was toilet paper, which is estimated to be 10-14 kg per year per average person in the western European countries. A seven months adaptation time was allowed for the thermophilic and mesophilic digesters in order to adapt to FSF as the sole substrate with varying dry solids content of 10-25%. Different SBR cycle durations (14, 9 and 2 days) were applied for both temperature conditions to study methane production rates, volatile fatty acids (VFAs) dynamics, lag phases, as well as changes in microbial communities. The prevailing sludge in the two digesters consisted of very different bacterial and archaeal communities, with OP9 lineage and Methanothermobacter being pre-dominant in the thermophilic digester and Bacteroides and Methanosaeta dominating the mesophilic one. Eventually, decreasing the SBR cycle period, thus increasing the FSF load, resulted in improved digester performances, particularly with regard to the thermophilic digester, i.e. shortened lag phases following the batch feedings, and reduced VFA peaks. Over time, the thermophilic digester outperformed the mesophilic one with 15% increased volatile solids (VS) destruction, irrespective to lower species diversity found at high temperature.


Asunto(s)
Ácidos Grasos Volátiles/metabolismo , Metano/metabolismo , Microbiota , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Países Bajos , Temperatura , Aguas Residuales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...