Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mass Spectrom ; 58(11): e4980, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37903508

RESUMEN

We report a collision-induced dissociation (CID) based gas phase rearrangement study using quadrupole time-of-flight mass spectrometry coupled with liquid chromatography on a novel endothelin and angiotensin II receptor antagonist, sparsentan. We performed tandem mass spectrometry to identify precursor and fragment ion relationships and assigned structures for major fragment ions. We propose a benzyl migration mechanism based on bond length measurements in density functional theory (B3LYP/6-31+G*) optimized geometries of protonated sparsentan and its m/z 547 fragment. Protonated sparsentan undergoes loss of ethanol, which yields a resonance-stabilized benzylic cation with m/z 547, which further fragments into m/z 353 via benzyl migration, where the benzylic cation migrates to one of the nucleophilic nitrogen atoms followed by proton transfer from the sulfonamide nitrogen to a carbonyl oxygen, resulting in a neutral loss of mass 194. Further fragmentation of m/z 353 results in m/z 258, which undergoes radical and neutral loss to yield m/z 193 and 194, respectively. The proposed mechanism of generation of m/z 353 was confirmed by CID of deuterated sparsentan. Considering the importance of gas phase rearrangements of organic molecules in structural identifications as well as the novelty of the molecule, these findings will be helpful for future studies to predict gas phase benzyl migration in sparsentan analogs and for degradation product and metabolite identification of sparsentan and its analogs using LC-MS.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Sulfonamidas , Cationes , Nitrógeno
2.
Hortic Res ; 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35048120

RESUMEN

Plant specialized 1,4-naphthoquinones present a remarkable case of convergent evolution. Species across multiple discrete orders of vascular plants produce diverse 1,4-naphthoquinones via one of several pathways using different metabolic precursors. Evolution of these pathways was preceded by events of metabolic innovation and many appear to share connections with biosynthesis of photosynthetic or respiratory quinones. Here, we sought to shed light on the metabolic connections linking shikonin biosynthesis with its precursor pathways and on the origins of shiknoin metabolic genes. Downregulation of Lithospermum erythrorhizon geranyl diphosphate synthase (LeGPPS), recently shown to have been recruited from a cytoplasmic farnesyl diphosphate synthase (FPPS), resulted in reduced shikonin production and a decrease in expression of mevalonic acid and phenylpropanoid pathway genes. Next, we used LeGPPS and other known shikonin pathway genes to build a coexpression network model for identifying new gene connections to shikonin metabolism. Integrative in silico analyses of network genes revealed candidates for biochemical steps in the shikonin pathway arising from Boraginales-specific gene family expansion. Multiple genes in the shikonin coexpression network were also discovered to have originated from duplication of ubiquinone pathway genes. Taken together, our study provides evidence for transcriptional crosstalk between shikonin biosynthesis and its precursor pathways, identifies several shikonin pathway gene candidates and their evolutionary histories, and establishes additional evolutionary links between shikonin and ubiquinone metabolism. Moreover, we demonstrate that global coexpression analysis using limited transcriptomic data obtained from targeted experiments is effective for identifying gene connections within a defined metabolic network.

3.
Theor Appl Genet ; 135(3): 1037-1047, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35001177

RESUMEN

Cyanogenic glucosides (CGs) play a key role in host-plant defense to insect feeding; however, the metabolic tradeoffs between synthesis of CGs and plant growth are not well understood. In this study, genetic mutants coupled with nondestructive phenotyping techniques were used to study the impact of the CG dhurrin on fall armyworm [Spodoptera frugiperda (J.E. Smith)] (FAW) feeding and plant growth in sorghum [Sorghum bicolor (L.) Moench]. A genetic mutation in CYP79A1 gene that disrupts dhurrin biosynthesis was used to develop sets of near-isogenic lines (NILs) with contrasting dhurrin contents in the Tx623 bmr6 genetic background. The NILs were evaluated for differences in plant growth and FAW feeding damage in replicated greenhouse and field trials. Greenhouse studies showed that dhurrin-free Tx623 bmr6 cyp79a1 plants grew more quickly than wild-type plants but were more susceptible to insect feeding based on changes in green plant area (GPA), total leaf area, and total dry weight over time. The NILs exhibited similar patterns of growth in field trials with significant differences in leaf area and dry weight of dhurrin-free plants between the infested and non-infested treatments. Taken together, these studies reveal a significant metabolic tradeoff between CG biosynthesis and plant growth in sorghum seedlings. Disruption of dhurrin biosynthesis produces plants with higher growth rates than wild-type plants but these plants have greater susceptibility to FAW feeding.


Asunto(s)
Sorghum , Animales , Nitrilos/metabolismo , Plantones/genética , Plantones/metabolismo , Sorghum/genética , Spodoptera/metabolismo
4.
Methods Mol Biol ; 2396: 117-136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34786680

RESUMEN

Analysis of volatile compounds in fruits and plants can be a challenging task as they present in a large amount with structural diversity and high aroma threshold, the information on molecular ion can be very useful for compound identification. Electron ionization gas-chromatography-mass spectrometry (EI-GC-MS) which is widely used for the analysis of plant volatiles has a certain limitation providing the limited capability to characterize novel metabolites in a complex biological matrix due to hard fragmentation level. Atmospheric pressure ionization using APGC source in combination with high-resolution time-of-flight mass spectrometry (TOF-MS) provides an excellent combination of GC with high-resolution mass spectrometry. The APGC-MS approach provides several advantages over the conventional EI and CI based GC-MS techniques in metabolomics studies due to highly reduced fragmentation, which preserves molecular ion, and accurate mass measurement by HRMS allows to deduce the elemental composition of the volatile compounds. Moreover, the use of MSE mode provides spectral similarity to EI in high-energy mode which can be used for the further confirmation of metabolite identity. We describe an APGC-MS-based untargeted metabolomics approach with a case study of grape volatile compounds and the development of a spectral library for metabolite identification.


Asunto(s)
Vitis , Presión Atmosférica , Frutas , Cromatografía de Gases y Espectrometría de Masas , Metabolómica
5.
Molecules ; 25(16)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796576

RESUMEN

Dicamba is a moderately volatile herbicide used for post-emergent control of broadleaf weeds in corn, soybean, and a number of other crops. With increased use of dicamba due to the release of dicamba-resistant cotton and soybean varieties, growing controversy over the effects of spray drift and volatilization on non-target crops has increased the need for quantifying dicamba collected from water and air sampling. Therefore, this study was designed to evaluate stable isotope-based direct quantification of dicamba from air and water samples using single-quadrupole liquid chromatography-mass spectrometry (LC-MS). The sample preparation protocols developed in this study utilize a simple solid-phase extraction (SPE) protocol for water samples and a single-step concentration protocol for air samples. The LC-MS detection method achieves sensitive detection of dicamba based on selected ion monitoring (SIM) of precursor and fragment ions and relies on the use of an isotopically labeled internal standard (IS) (D3-dicamba), which allows for calculating recoveries and quantification using a relative response factor (RRF). Analyte recoveries of 106-128% from water and 88-124% from air were attained, with limits of detection (LODs) of 0.1 ng mL-1 and 1 ng mL-1, respectively. The LC-MS detection method does not require sample pretreatment such as ion-pairing or derivatization to achieve sensitivity. Moreover, this study reveals matrix effects associated with sorbent resin used in air sample collection and demonstrates how the use of an isotopically labeled IS with RRF-based analysis can account for ion suppression. The LC-MS method is easily transferrable and offers a robust alternative to methods relying on more expensive tandem LC-MS/MS-based options.


Asunto(s)
Cromatografía Liquida/métodos , Dicamba/análisis , Herbicidas/análisis , Marcaje Isotópico/métodos , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Agua/química , Aire , Dicamba/aislamiento & purificación , Herbicidas/aislamiento & purificación , Límite de Detección
6.
Hortic Res ; 7(1): 82, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528694

RESUMEN

Lithospermum erythrorhizon (red gromwell; zicao) is a medicinal and economically valuable plant belonging to the Boraginaceae family. Roots from L. erythrorhizon have been used for centuries based on the antiviral and wound-healing properties produced from the bioactive compound shikonin and its derivatives. More recently, shikonin, its enantiomer alkannin, and several other shikonin/alkannin derivatives have collectively emerged as valuable natural colorants and as novel drug scaffolds. Despite several transcriptomes and proteomes having been generated from L. erythrorhizon, a reference genome is still unavailable. This has limited investigations into elucidating the shikonin/alkannin pathway and understanding its evolutionary and ecological significance. In this study, we obtained a de novo genome assembly for L. erythrorhizon using a combination of Oxford Nanopore long-read and Illumina short-read sequencing technologies. The resulting genome is ∼367.41 Mb long, with a contig N50 size of 314.31 kb and 27,720 predicted protein-coding genes. Using the L. erythrorhizon genome, we identified several additional p-hydroxybenzoate:geranyltransferase (PGT) homologs and provide insight into their evolutionary history. Phylogenetic analysis of prenyltransferases suggests that PGTs originated in a common ancestor of modern shikonin/alkannin-producing Boraginaceous species, likely from a retrotransposition-derived duplication event of an ancestral prenyltransferase gene. Furthermore, knocking down expression of LePGT1 in L. erythrorhizon hairy root lines revealed that LePGT1 is predominantly responsible for shikonin production early in culture establishment. Taken together, the reference genome reported in this study and the provided analysis on the evolutionary origin of shikonin/alkannin biosynthesis will guide elucidation of the remainder of the pathway.

7.
Int J Mol Sci ; 17(6)2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-27231903

RESUMEN

Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.


Asunto(s)
Metabolismo de los Lípidos , Espectrometría de Masas/métodos , Metabolómica/métodos , Ciclotrones , Análisis de Fourier
8.
Food Chem ; 188: 309-19, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26041197

RESUMEN

Every grape cultivar has its own unique genetic characteristics, leading to the production of a different secondary metabolite profile. Aroma is one of the most important aspects in terms of the quality of grapes and previous studies have assigned specific aromas to particular grape cultivars. In this study we present the molecular profiling of volatile aroma metabolites and their precursors in ten selected genotypes, including six Vitis vinifera cultivars, two American species (Arizonica Texas, Vitis cinerea) and two interspecific crosses. Chemical profiling was achieved through combined use of two orthogonal techniques, GC-MS and LC-HRMS, before and after enzymatic hydrolysis. The results show that both free and glycosidically bound aroma precursors behave differently in each different grape cultivar and species. As many as 66 free aroma volatile molecules (originally existing and released after hydrolysis) were profiled through GC-MS analysis, while 15 glycosylated precursors of volatiles were identified through LC-HRMS and correlation with GC-MS data.


Asunto(s)
Frutas/química , Vitis/química , Compuestos Orgánicos Volátiles/análisis , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Glicósidos/análisis , Glicosilación , Hidrólisis , Vitis/clasificación
9.
J Environ Sci Health B ; 47(7): 700-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22560033

RESUMEN

This paper reports the bioefficacy of selected insecticides against thrips and their pre-harvest intervals (PHI) in onion pertaining to their recommended application rates and maximum residue limits. Profenophos, methomyl and imidacloprid showed comparatively higher bioefficacy against thrips. GC-MS and LC-MS/MS-based residue analysis methods in onion bulbs and composite matrix of bulbs+leaves were thoroughly validated. The residue data for bulb+leaves was assessed with reference to the EU-MRLs applicable for spring onion. Dimethoate was the most stable chemical with PHI of 52.5 days, followed by monocrotophos (24 days) and carbofuran (20.5 days). The PHIs of profenophos, chlorpyrifos, methomyl and cypermethrin were similar and within the range of 10-13 days. Imidacloprid and λ-cyhalothrin had similar PHI of 4.5 days. Spinosad was the fastest-degrading chemical with PHI of 2 days. The combined bioefficacy and residue dynamics information will support label-claim of these insecticides for the management of thrips in onion, help in scheduling their applications in pest management program as per relative PHIs and minimize the residue accumulations at harvest. The dietary exposure was less than the maximum permissible intake for most of the insecticides on all sampling days except for dimethoate and monocrotophos.


Asunto(s)
Insecticidas/química , Insecticidas/farmacología , Cebollas/parasitología , Enfermedades de las Plantas/parasitología , Thysanoptera/efectos de los fármacos , Animales , Control de Insectos , Cinética
10.
J AOAC Int ; 94(3): 968-77, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21797026

RESUMEN

A selective and rapid multiresidue analysis method is presented for simultaneous estimation of 12 plant growth regulators (PGRs), namely, auxins (indol-3-acetic acid, indol-3-butyric acid, and naphthyl acetic acid), cytokinins (kinetin, zeatin, and 6-benzyladenine), gibberellic acid (GA3), abscisic acid, and synthetic compounds, namely, forchlorfenuron, paclobutrazole, isoprothiolane, and 2,4-dichlorophenoxy acetic acid (2,4-D) in bud sprouts and grape berries at the development stages of 2-3 and 6-8 mm diameters, which are the critical phases when exogenous application of PGRs may be necessary to achieve desired grape quality and yield. The sample preparation method involved extraction of plant material with acidified methanol (50%) by homogenization for 2 min at 15000 rpm. The pH of the extract was enhanced up to 6 by adding ammonium acetate, followed by homogenization and centrifugation. The supernatant extract was cleaned by SPE on an Oasis HLB cartridge (200 mg, 6 cc). The final extract was measured directly by LC/MS/MS with electrospray ionization in positive mode, except for 2,4-D, GA3, and abscisic acid extracts, which required analysis in negative mode. Quantification by multiple reaction monitoring (MRM) was supported with full-scan mass spectrometric confirmation using "information-dependent acquisition" triggered with MRM to "enhanced product ionization" mode of the hybrid quadrupole-ion trap mass analyzer. The LOQ of the test analytes varied between 1 and 10 ng/g with associated recoveries of 80-120% and precision RSD <25% (n = 8). Significant matrix-induced signal suppression was recorded when the responses for pre- and postextraction spikes of analytes were compared; this could be resolved by using matrix-matched calibration standards. The method could successfully be applied in analyzing incurred residue samples and would, therefore, be useful in precisely deciding the necessity and dose of exogenous applications of PGRs on the basis of measured endogenous levels.


Asunto(s)
Cromatografía Liquida/métodos , Frutas/química , Reguladores del Crecimiento de las Plantas/química , Espectrometría de Masas en Tándem/métodos , Vitis/química , Estructura Molecular , Reguladores del Crecimiento de las Plantas/clasificación
11.
Proc Natl Acad Sci U S A ; 108(5): 1955-60, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245311

RESUMEN

Leaf-cutting ants cultivate the fungus Leucoagaricus gongylophorus, which serves as a major food source. This symbiosis is threatened by microbial pathogens that can severely infect L. gongylophorus. Microbial symbionts of leaf-cutting ants, mainly Pseudonocardia and Streptomyces, support the ants in defending their fungus gardens against infections by supplying antimicrobial and antifungal compounds. The ecological role of microorganisms in the nests of leaf-cutting ants can only be addressed in detail if their secondary metabolites are known. Here, we use an approach for the rapid identification of established bioactive compounds from microorganisms in ecological contexts by combining phylogenetic data, database searches, and liquid chromatography electrospray ionisation high resolution mass spectrometry (LC-ESI-HR-MS) screening. Antimycins A(1)-A(4), valinomycins, and actinomycins were identified in this manner from Streptomyces symbionts of leaf-cutting ants. Matrix-assisted laser desorption ionization (MALDI) imaging revealed the distribution of valinomycin directly on the integument of Acromyrmex echinatior workers. Valinomycins and actinomycins were also directly identified in samples from the waste of A. echinatior and A. niger leaf-cutting ants, suggesting that the compounds exert their antimicrobial and antifungal potential in the nests of leaf-cutting ants. Strong synergistic effects of the secondary meta-bolites produced by ant-associated Streptomyces were observed in the agar diffusion assay against Escovopsis weberi. Actinomycins strongly inhibit soil bacteria as well as other Streptomyces and Pseudonocardia symbionts. The antifungal antimycins are not only active against pathogenic fungi but also the garden fungus L. gongylophorus itself. In conclusion, secondary metabolites of microbial symbionts of leaf-cutting ants contribute to shaping the microbial communities within the nests of leaf-cutting ants.


Asunto(s)
Hormigas/fisiología , Hojas de la Planta , Simbiosis , Animales , Antiinfecciosos/farmacología , Hormigas/microbiología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Cromatografía Liquida , Hongos/clasificación , Hongos/efectos de los fármacos , Hongos/aislamiento & purificación , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray
12.
J Chromatogr A ; 1217(24): 3881-9, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20435316

RESUMEN

Two-dimensional gas chromatography (GCxGC) coupled with time-of-flight mass spectrometric (TOFMS) method was optimized for simultaneous analysis of 160 pesticides, 12 dioxin-like polychlorinated biphenyls (PCBs), 12 polyaromatic hydrocarbons (PAHs) and bisphenol A in grape and wine. GCxGC-TOFMS could separate all the 185 analytes within 38min with >85% NIST library-based mass spectral confirmations. The matrix effect quantified as the ratio of the slope of matrix-matched to solvent calibrations was within 0.5-1.5 for most analytes. LOQ of most of the analytes was < or =10microg/L with nine exceptions having LOQs of 12.5-25microg/L. Recoveries ranged between 70 and 120% with <20% expanded uncertainties for 151 and 148 compounds in grape and wine, respectively, with intra-laboratory Horwitz ratio <0.2 for all analytes. The method was evaluated in the incurred grape samples where residues of cypermethrin, permethrin, chlorpyriphos, metalaxyl and etophenprox were detected at below MRL.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Residuos de Plaguicidas/análisis , Vitis/química , Vino/análisis , Bifenilos Policlorados , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Urea/química
13.
J Agric Food Chem ; 58(3): 1447-54, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20020699

RESUMEN

A selective and sensitive multiresidue analysis method is reported for simultaneous determination of 50 pesticides of different chemical classes in three commercially important fruits of different nature viz. grape, pomegranate, and mango. The sample preparation method involves extraction of a 10 g sample with 10 mL of ethyl acetate; cleanup by dispersive solid phase extraction with primary secondary amine (PSA, 25 mg) for grape and PSA + graphitized carbon black (25 + 5 mg) for pomegranate and mango; and determination by gas chromatography-ion trap mass spectrometry through multiple reaction monitoring (MRM). Sample preparation under acidified (pH 4) and cold (<4 degrees C) conditions, use of PTV-large volume injection (20 microL) through multibaffled liner and chromatographic separation on a short 10 m VF-5MS capillary column gave a satisfactory response for all of the analytes including relatively unstable compounds such as captan, captafol, folpet, endrine, and iprodione within 31.8 min. The limit of quantification (LOQ) of most of the compounds was

Asunto(s)
Frutas/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Lythraceae/química , Mangifera/química , Residuos de Plaguicidas/química , Vitis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA