Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Immunol ; 207(6): 1578-1590, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34400523

RESUMEN

In the Plasmodium berghei ANKA mouse model of malaria, accumulation of CD8+ T cells and infected RBCs in the brain promotes the development of experimental cerebral malaria (ECM). In this study, we used malaria-specific transgenic CD4+ and CD8+ T cells to track evolution of T cell immunity during the acute and memory phases of P. berghei ANKA infection. Using a combination of techniques, including intravital multiphoton and confocal microscopy and flow cytometric analysis, we showed that, shortly before onset of ECM, both CD4+ and CD8+ T cell populations exit the spleen and begin infiltrating the brain blood vessels. Although dominated by CD8+ T cells, a proportion of both T cell subsets enter the brain parenchyma, where they are largely associated with blood vessels. Intravital imaging shows these cells moving freely within the brain parenchyma. Near the onset of ECM, leakage of RBCs into areas of the brain can be seen, implicating severe damage. If mice are cured before ECM onset, brain infiltration by T cells still occurs, but ECM is prevented, allowing development of long-term resident memory T cell populations within the brain. This study shows that infiltration of malaria-specific T cells into the brain parenchyma is associated with cerebral immunopathology and the formation of brain-resident memory T cells. The consequences of these resident memory populations is unclear but raises concerns about pathology upon secondary infection.


Asunto(s)
Barrera Hematoencefálica/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Malaria Cerebral/inmunología , Plasmodium berghei/inmunología , Traslado Adoptivo/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Malaria Cerebral/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Parasitemia/inmunología , Bazo/inmunología
3.
Immunity ; 54(6): 1219-1230.e7, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33915109

RESUMEN

The sympathetic nervous system (SNS) controls various physiological functions via the neurotransmitter noradrenaline. Activation of the SNS in response to psychological or physical stress is frequently associated with weakened immunity. Here, we investigated how adrenoceptor signaling influences leukocyte behavior. Intravital two-photon imaging after injection of noradrenaline revealed transient inhibition of CD8+ and CD4+ T cell locomotion in tissues. Expression of ß-adrenergic receptor in hematopoietic cells was not required for NA-mediated inhibition of motility. Rather, chemogenetic activation of the SNS or treatment with adrenergic receptor agonists induced vasoconstriction and decreased local blood flow, resulting in abrupt hypoxia that triggered rapid calcium signaling in leukocytes and halted cell motility. Oxygen supplementation reversed these effects. Treatment with adrenergic receptor agonists impaired T cell responses induced in response to viral and parasitic infections, as well as anti-tumor responses. Thus, stimulation of the SNS impairs leukocyte mobility, providing a mechanistic understanding of the link between adrenergic receptors and compromised immunity.


Asunto(s)
Adrenérgicos/inmunología , Movimiento Celular/inmunología , Inmunidad/inmunología , Leucocitos/inmunología , Sistema Nervioso Simpático/inmunología , Animales , Señalización del Calcio/inmunología , Línea Celular Tumoral , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores Adrenérgicos/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología
4.
Front Immunol ; 11: 1549, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903717

RESUMEN

The brain is considered an immune privileged site due to the high selectivity of the blood-brain barrier which restricts the passage of molecules and cells into the brain parenchyma. Recent studies have highlighted active immunosurveillance mechanisms in the brain. Here we review emerging evidence for the contribution of innate lymphoid cells (ILCs) including natural killer (NK) cells to the immunosurveillance of brain cancers focusing on glioblastoma, one of the most aggressive and most common malignant primary brain tumors diagnosed in adults. Moreover, we discuss how the local tissue microenvironment and unique cellular interactions influence ILC functions in the brain and how these interactions might be successfully harnessed for cancer immunotherapy using insights gained from the studies of autoimmunity, aging, and CNS injury.


Asunto(s)
Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/metabolismo , Susceptibilidad a Enfermedades , Inmunidad Innata , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/inmunología , Animales , Biomarcadores , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Ensayos Clínicos como Asunto , Manejo de la Enfermedad , Humanos , Inmunofenotipificación , Inmunoterapia/métodos , Células Asesinas Naturales/metabolismo , Subgrupos Linfocitarios/metabolismo , Resultado del Tratamiento
5.
Nat Immunol ; 21(10): 1205-1218, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32839608

RESUMEN

Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Malaria/inmunología , Proteínas de la Membrana/metabolismo , Plasmodium/fisiología , Animales , Células Cultivadas , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Exocitosis , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Vesículas Secretoras/metabolismo
6.
Cell Host Microbe ; 27(6): 950-962.e7, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32396839

RESUMEN

Liver-resident memory CD8+ T (TRM) cells remain in and constantly patrol the liver to elicit rapid immunity upon antigen encounter and can mediate efficient protection against liver-stage Plasmodium infection. This finding has prompted the development of immunization strategies where T cells are activated in the spleen and then trapped in the liver to form TRM cells. Here, we identify PbRPL6120-127, a H2-Kb-restricted epitope from the putative 60S ribosomal protein L6 (RPL6) of Plasmodium berghei ANKA, as an optimal antigen for endogenous liver TRM cell generation and protection against malaria. A single dose vaccination targeting RPL6 provided effective and prolonged sterilizing immunity against high dose sporozoite challenges. Expressed throughout the parasite life cycle, across Plasmodium species, and highly conserved, RPL6 exhibits strong translation potential as a vaccine candidate. This is further advocated by the identification of a broadly conserved, immunogenic HLA-A∗02:01-restricted epitope in P. falciparum RPL6.


Asunto(s)
Antígenos de Protozoos/inmunología , Inmunidad Celular/inmunología , Hígado/inmunología , Péptidos/inmunología , Plasmodium berghei/inmunología , Proteínas Ribosómicas/inmunología , Animales , Anopheles , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células Dendríticas/inmunología , Femenino , Inmunización , Memoria Inmunológica/inmunología , Hígado/parasitología , Malaria/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Esporozoítos/inmunología
7.
Front Immunol ; 9: 2016, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30250468

RESUMEN

Cerebral malaria (CM) is an acute encephalopathy caused by the malaria parasite Plasmodium falciparum, which develops in a small minority of infected patients and is responsible for the majority of deaths in African children. Despite decades of research on CM, the pathogenic mechanisms are still relatively poorly defined. Nevertheless, many studies in recent years, using a combination of animal models, in vitro cell culture work, and human patients, provide significant insight into the pathologic mechanisms leading to CM. In this review, we summarize recent findings from mouse models and human studies on the pathogenesis of CM, understanding of which may enable development of novel therapeutic approaches.


Asunto(s)
Barrera Hematoencefálica/inmunología , Encéfalo/inmunología , Células Asesinas Naturales/inmunología , Malaria Cerebral/inmunología , Plasmodium falciparum/fisiología , Linfocitos T/inmunología , Animales , Encéfalo/parasitología , Niño , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones
8.
Ann N Y Acad Sci ; 1412(1): 54-61, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29125188

RESUMEN

While the majority of myasthenia gravis patients express antibodies targeting the acetylcholine receptor, the second most common cohort instead displays autoantibodies against muscle-specific kinase (MuSK). MuSK is a transmembrane tyrosine kinase found in the postsynaptic membrane of the neuromuscular junction. During development, MuSK serves as a signaling hub, coordinating the alignment of the pre- and postsynaptic components of the synapse. Adult mice that received repeated daily injections of IgG from anti-MuSK+ myasthenia gravis patients developed muscle weakness, associated with neuromuscular transmission failure. MuSK autoantibodies are predominantly of the IgG4 type. They suppress the kinase activity of MuSK and the phosphorylation of target proteins in the postsynaptic membrane. Loss of postsynaptic acetylcholine receptors is the primary cause of neuromuscular transmission failure. MuSK autoantibodies also disrupt the capacity of the motor nerve terminal to adaptively increase acetylcholine release in response to the reduced postsynaptic responsiveness to acetylcholine. The passive IgG transfer model of MuSK myasthenia gravis has been used to test candidate treatments. Pyridostigmine, a first-line cholinesterase inhibitor drug, exacerbated the disease process, while 3,4-diaminopyridine and albuterol were found to be beneficial in this mouse model.


Asunto(s)
Miastenia Gravis Autoinmune Experimental/etiología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/inmunología , Animales , Inhibidores de la Colinesterasa/farmacología , Femenino , Humanos , Inmunización Pasiva , Ratones , Proteínas Musculares/metabolismo , Miastenia Gravis Autoinmune Experimental/inmunología , Miastenia Gravis Autoinmune Experimental/fisiopatología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Colinérgicos/inmunología , Receptores Colinérgicos/metabolismo , Sinapsis/inmunología , Sinapsis/fisiología
9.
J Immunol ; 199(12): 4165-4179, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29084838

RESUMEN

We describe an MHC class II (I-Ab)-restricted TCR transgenic mouse line that produces CD4+ T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4+ T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human (Plasmodium falciparum) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8+ T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4+ T cells and the previously described PbT-I CD8+ T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8+ DC (a subset of XCR1+ DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4+ T cell responses. Depletion of CD8+ DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4+ T cell immunity during malaria and provides evidence that CD4+ T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8+ DC.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD4-Positivos/inmunología , Antígenos CD40/inmunología , Células Dendríticas/inmunología , Malaria/inmunología , Ratones Transgénicos/inmunología , Parasitemia/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos de Protozoos/inmunología , Antígenos CD40/deficiencia , Ligando de CD40/inmunología , Células Cultivadas , Cruzamientos Genéticos , Hibridomas , Activación de Linfocitos , Malaria Cerebral/inmunología , Malaria Cerebral/prevención & control , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , Plasmodium berghei/inmunología , Quimera por Radiación
10.
Physiol Rep ; 3(12)2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26702075

RESUMEN

We investigated the influence of postsynaptic tyrosine kinase signaling in a mouse model of muscle-specific kinase (MuSK) myasthenia gravis (MG). Mice administered repeated daily injections of IgG from MuSK MG patients developed impaired neuromuscular transmission due to progressive loss of acetylcholine receptor (AChR) from the postsynaptic membrane of the neuromuscular junction. In this model, anti-MuSK-positive IgG caused a reduction in motor endplate immunolabeling for phosphorylated Src-Y418 and AChR ß-subunit-Y390 before any detectable loss of MuSK or AChR from the endplate. Adeno-associated viral vector (rAAV) encoding MuSK fused to enhanced green fluorescent protein (MuSK-EGFP) was injected into the tibialis anterior muscle to increase MuSK synthesis. When mice were subsequently challenged with 11 daily injections of IgG from MuSK MG patients, endplates expressing MuSK-EGFP retained more MuSK and AChR than endplates of contralateral muscles administered empty vector. Recordings of compound muscle action potentials from myasthenic mice revealed less impairment of neuromuscular transmission in muscles that had been injected with rAAV-MuSK-EGFP than contralateral muscles (empty rAAV controls). In contrast to the effects of MuSK-EGFP, forced expression of rapsyn-EGFP provided no such protection to endplate AChR when mice were subsequently challenged with MuSK MG IgG. In summary, the immediate in vivo effect of MuSK autoantibodies was to suppress MuSK-dependent tyrosine phosphorylation of proteins in the postsynaptic membrane, while increased MuSK synthesis protected endplates against AChR loss. These results support the hypothesis that reduced MuSK kinase signaling initiates the progressive disassembly of the postsynaptic membrane scaffold in this mouse model of MuSK MG.

11.
J Physiol ; 592(13): 2881-97, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24860174

RESUMEN

Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR ß-subunit-Y390 was reduced at endplates. In contrast, endplate staining for ß-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold.


Asunto(s)
Autoanticuerpos/farmacología , Inmunoglobulina G/farmacología , Placa Motora/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/metabolismo , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Placa Motora/efectos de los fármacos , Placa Motora/fisiología , Proteínas Musculares/metabolismo , Miastenia Gravis/inmunología , Transporte de Proteínas , Proteínas Tirosina Quinasas Receptoras/inmunología , Familia-src Quinasas/metabolismo
12.
PLoS One ; 9(2): e87840, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505322

RESUMEN

The ß2-adrenergic receptor agonist, albuterol, has been reported beneficial in treating several forms of congenital myasthenia. Here, for the first time, we examined the potential benefit of albuterol in a mouse model of anti-Muscle Specific Kinase (MuSK) myasthenia gravis. Mice received 15 daily injections of IgG from anti-MuSK positive patients, which resulted in whole-body weakness. At neuromuscular junctions in the tibialis anterior and diaphragm muscles the autoantibodies caused loss of postsynaptic acetylcholine receptors, and reduced the amplitudes of the endplate potential and spontaneous miniature endplate potential in the diaphragm muscle. Treatment with albuterol (8 mg/kg/day) during the two-week anti-MuSK injection series reduced the degree of weakness and weight loss, compared to vehicle-treated mice. However, the compound muscle action potential recorded from the gastrocnemius muscle displayed a decremental response in anti-MuSK-injected mice whether treated with albuterol or vehicle. Ongoing albuterol treatment did not increase endplate potential amplitudes compared to vehicle-treated mice nor did it prevent the loss of acetylcholine receptors from motor endplates. On the other hand, albuterol treatment significantly reduced the degree of fragmentation of endplate acetylcholine receptor clusters and increased the extent to which the remaining receptor clusters were covered by synaptophysin-stained nerve terminals. The results provide the first evidence that short-term albuterol treatment can ameliorate weakness in a robust mouse model of anti-MuSK myasthenia gravis. The results also demonstrate that it is possible for albuterol treatment to reduce whole-body weakness without necessarily reversing myasthenic impairment to the structure and function of the neuromuscular junction.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Albuterol/farmacología , Autoanticuerpos/toxicidad , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Animales , Autoanticuerpos/inmunología , Femenino , Humanos , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Miastenia Gravis Autoinmune Experimental/inducido químicamente , Miastenia Gravis Autoinmune Experimental/inmunología , Miastenia Gravis Autoinmune Experimental/patología , Unión Neuromuscular/inmunología , Unión Neuromuscular/patología , Proteínas Tirosina Quinasas Receptoras/inmunología
13.
J Vis Exp ; (94)2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25590231

RESUMEN

The neuromuscular junction (NMJ) is the large, cholinergic relay synapse through which mammalian motor neurons control voluntary muscle contraction. Structural changes at the NMJ can result in neurotransmission failure, resulting in weakness, atrophy and even death of the muscle fiber. Many studies have investigated how genetic modifications or disease can alter the structure of the mouse NMJ. Unfortunately, it can be difficult to directly compare findings from these studies because they often employed different parameters and analytical methods. Three protocols are described here. The first uses maximum intensity projection confocal images to measure the area of acetylcholine receptor (AChR)-rich postsynaptic membrane domains at the endplate and the area of synaptic vesicle staining in the overlying presynaptic nerve terminal. The second protocol compares the relative intensities of immunostaining for synaptic proteins in the postsynaptic membrane. The third protocol uses Fluorescence Resonance Energy Transfer (FRET) to detect changes in the packing of postsynaptic AChRs at the endplate. The protocols have been developed and refined over a series of studies. Factors that influence the quality and consistency of results are discussed and normative data are provided for NMJs in healthy young adult mice.


Asunto(s)
Microscopía Confocal/métodos , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/fisiología , Sinapsis/fisiología , Animales , Femenino , Transferencia Resonante de Energía de Fluorescencia , Ratones , Ratones Endogámicos C57BL , Placa Motora/metabolismo , Unión Neuromuscular/anatomía & histología , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Sinapsis/metabolismo
14.
PLoS One ; 8(7): e67970, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844140

RESUMEN

Loss of connections between motor neurons and skeletal muscle fibers contribute to motor impairment in old age, but the sequence of age-associated changes that precede loss of the neuromuscular synapse remains uncertain. Here we determine changes in the size of neuromuscular synapses within the tibialis anterior muscle across the life span of C57BL/6J mice. Immunofluorescence, confocal microscopy and morphometry were used to measure the area occupied by nerve terminal synaptophysin staining and postsynaptic acetylcholine receptors at motor endplates of 2, 14, 19, 22, 25 and 28 month old mice. The key findings were: 1) At middle age (14-months) endplate acetylcholine receptors occupied 238 ± 11 µm(2) and nerve terminal synaptophysin 168 ± 14 µm(2) (mean ± SEM). 2) Between 14-months and 19-months (onset of old age) the area occupied by postsynaptic acetylcholine receptors declined 30%. At many endplates the large acetylcholine receptor plaque became fragmented into multiple smaller acetylcholine receptor clusters. 3) Between 19- and 25-months, the fraction of endplate acetylcholine receptors covered by synaptophysin fell 21%. By 28-months, half of the endplates imaged retained ≤ 50 µm(2) area of synaptophysin staining. 4) Within aged muscles, the degree to which an endplate remained covered by synaptophysin did not depend upon the total area of acetylcholine receptors, nor upon the number of discrete receptor clusters. 5) Voluntary wheel-running exercise, beginning late in middle-age, prevented much of the age-associated loss of nerve terminal synaptophysin. In summary, a decline in the area of endplate acetylcholine receptor clusters at the onset of old age was followed by loss of nerve terminal synaptophysin from the endplate. Voluntary running exercise, begun late in middle age, substantially inhibited the loss of nerve terminal from aging motor endplates.


Asunto(s)
Envejecimiento/fisiología , Unión Neuromuscular/fisiología , Condicionamiento Físico Animal , Factores de Edad , Animales , Femenino , Ratones , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Terminaciones Nerviosas , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Receptores Colinérgicos/metabolismo , Sinaptofisina/metabolismo
15.
J Physiol ; 591(10): 2747-62, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23440963

RESUMEN

In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft.


Asunto(s)
Debilidad Muscular/fisiopatología , Miastenia Gravis Autoinmune Experimental/fisiopatología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Colinérgicos/fisiología , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/farmacología , Amifampridina , Animales , Autoanticuerpos/farmacología , Inhibidores de la Colinesterasa/farmacología , Potenciales Evocados , Femenino , Humanos , Inmunoglobulina G/farmacología , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/fisiología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Bromuro de Piridostigmina/farmacología
16.
Exp Neurol ; 237(2): 286-95, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22789393

RESUMEN

In myasthenia gravis muscle weakness is caused by autoantibodies against components of the neuromuscular junction. Patient autoantibodies against muscle specific kinase (MuSK) deplete MuSK from the postsynaptic membrane and reproduce signs of myasthenia gravis when injected into mice. Here we have examined the time-course of structural and functional changes that lead up to synaptic failure. C57Bl6J mice received daily injections of anti-MuSK patient IgG for 15 days. Mice began to lose weight from day 12 and demonstrated whole-body weakness by day 14. Electromyography indicated synaptic impairment from day 6 in the gastrocnemius muscle and from day 10 in the diaphragm muscle. Confocal microscopy revealed linear declines in the area and density of postsynaptic acetylcholine receptors (3-5% per day) from day 1 through day 15 of the injection series in all five muscles examined. Intracellular recordings from the diaphragm muscle revealed comparable progressive declines in the amplitude of the endplate potential and miniature endplate potential of 3-4% per day. Neither quantal content nor the postsynaptic action potential threshold changed significantly over the injection series. The inverse relationship between the quantal amplitude of a synapse and its quantal content disappeared only late in the injection series (day 10). Our results suggest that the primary myasthenogenic action of anti-MuSK IgG is to cause wastage of postsynaptic acetylcholine receptor density. Consequent reductions in endplate potential amplitudes culminated in failure of neuromuscular transmission.


Asunto(s)
Autoanticuerpos/inmunología , Miastenia Gravis/metabolismo , Unión Neuromuscular/metabolismo , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Colinérgicos/metabolismo , Potenciales de Acción/fisiología , Animales , Autoantígenos/inmunología , Electromiografía , Femenino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Miastenia Gravis/inmunología , Miastenia Gravis/fisiopatología , Unión Neuromuscular/inmunología , Unión Neuromuscular/fisiopatología , Sinapsis , Transmisión Sináptica/fisiología
17.
Int J Biochem Cell Biol ; 43(3): 295-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20974278

RESUMEN

Muscle Specific Kinase (MuSK) is a transmembrane tyrosine kinase vital for forming and maintaining the mammalian neuromuscular junction (NMJ: the synapse between motor nerve and skeletal muscle). MuSK expression switches on during skeletal muscle differentiation. MuSK then becomes restricted to the postsynaptic membrane of the NMJ, where it functions to cluster acetylcholine receptors (AChRs). The expression, activation and turnover of MuSK are each regulated by signals from the motor nerve terminal. MuSK forms the core of an emerging signalling complex that can be acutely activated by neural agrin (N-agrin), a heparin sulfate proteoglycan secreted from the nerve terminal. MuSK activation initiates complex intracellular signalling events that coordinate the local synthesis and assembly of synaptic proteins. The importance of MuSK as a synapse organiser is highlighted by cases of autoimmune myasthenia gravis in which MuSK autoantibodies can deplete MuSK from the postsynaptic membrane, leading to complete disassembly of the adult NMJ.


Asunto(s)
Microdominios de Membrana/metabolismo , Músculos/enzimología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Membranas Sinápticas/metabolismo , Animales , Enfermedades Autoinmunes/enzimología , Humanos , Especificidad de Órganos , Proteínas Tirosina Quinasas Receptoras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...