Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Tetrahedron Lett ; 1402024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38586565

RESUMEN

We describe a stereoselective synthesis of an optically active (1R, 3aS, 5R, 6S, 7aR)-octahydro-1,6-epoxy-isobenzo-furan-5-ol derivative. This stereochemically defined heterocycle serves as a high-affinity ligand for a variety of HIV-1 protease inhibitors. The key synthetic steps involve a highly enantioselective enzymatic desymmetrization of meso-1,2(dihydroxymethyl)cyclohex-4-ene and conversion of the resulting optically active alcohol to a methoxy hexahydroisobenzofuran derivative. A substrate controlled stereoselective dihydroxylation afforded syn-1,2-diols. Oxidation of diol provided the substituted 1,2-diketone and L-Selectride reduction provided the corresponding inverted syn-1,2-diols. Acid catalyzed cyclization furnished the ligand alcohol in optically active form.

2.
Eur J Med Chem ; 267: 116132, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335815

RESUMEN

We report the synthesis, biological evaluation, and X-ray structural studies of a series of SARS-CoV-2 Mpro inhibitors based upon the X-ray crystal structure of nirmatrelvir, an FDA approved drug that targets the main protease of SARS-CoV-2. The studies involved examination of various P4 moieties, P1 five- and six-membered lactam rings to improve potency. In particular, the six-membered P1 lactam ring analogs exhibited high SARS-CoV-2 Mpro inhibitory activity. Several compounds effectively blocked SARS-CoV-2 replication in VeroE6 cells. One of these compounds maintained good antiviral activity against variants of concern including Delta and Omicron variants. A high-resolution X-ray crystal structure of an inhibitor bound to SARS-CoV-2 Mpro was determined to gain insight into the ligand-binding properties in the Mpro active site.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Rayos X , Lactamas , Leucina , Nitrilos , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , Simulación del Acoplamiento Molecular
3.
Bioorg Med Chem ; 97: 117559, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109811

RESUMEN

Bacterial resistance is undoubtedly one of the main public health concerns especially with the emergence of metallo-ß-lactamases (MBLs) able to hydrolytically inactivate ß-lactam antibiotics. Currently, there are no inhibitors of MBLs in clinical use to rescue antibiotic action and the New Delhi metallo-ß-lactamase-1 (NDM-1) is still considered as one of the most relevant targets for inhibitor development. Following a fragment-based strategy to find new NDM-1 inhibitors, we identified aurone as a promising scaffold. A series of 60 derivatives were then evaluated and two of them were identified as promising inhibitors with Ki values as low as 1.7 and 2.5 µM. Moreover, these two most active compounds were able to potentiate meropenem in in vitro antimicrobial susceptibility assays. The molecular modelling provided insights about their likely interactions with the active site of NDM-1, thus enabling further improvement in the structure of this new inhibitor family.


Asunto(s)
Benzofuranos , Inhibidores de beta-Lactamasas , beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/química , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química , Pruebas de Sensibilidad Microbiana
4.
J Recept Signal Transduct Res ; 42(6): 549-561, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35704515

RESUMEN

PURPOSE: Cancer is a significant public health problem and ranks as a leading cause of death globally. Multidrug resistance (MDR) affects the therapeutic potential of conventional chemotherapeutic agents in cancer chemotherapy. Receptor tyrosine kinases (RTKs) are enzymes whose aberrant activation contributes to the tumorigenesis of various types of cancers. The ability of several RTKs, such as c-Met, to reverse ABC transporters mediated MDR was shown before. We aimed to explore the ability of c-Met inhibitors to circumvent MDR in cancer by inhibiting the ABCB1 transporter using in silico studies. METHODS: Docking virtual screening of several potent and structurally diverse c-Met inhibitors were applied to find repurposed candidates to target the ATP binding sites and drug-substrate binding pockets of the ABCB1 transporter. The selected candidate was subjected to molecular dynamics simulations. RESULTS: Based on docking findings, among 19 clinical c-Met inhibitors, several drugs, particularly golvatinib, exerted the affinity to both ATP binding sites in the nucleotide-binding domains (NBDs) as well as the drug-substrate binding site in the transmembrane domains (TMDs). Moreover, several non-clinical c-Met inhibitors obtained from the ChEMBL database had strong interactions with TMDs and NBDs, among which CHEMBL1950194 and CHEMBL2385194 compounds showed the highest binding affinity, respectively. Additionally, as a potential repositioning drug, MD simulation studies of golvatinib, corroborated the docking results. CONCLUSION: We applied docking and molecular dynamics simulations to screen the potential c-Met inhibitors as the MDR reversing agents targeting ATP and drug-substrate binding sites, and the results suggested several repurposed candidate drugs.


Asunto(s)
Antineoplásicos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Nucleótidos/metabolismo , Nucleótidos/farmacología , Resistencia a Antineoplásicos , Línea Celular Tumoral , Proteínas de Neoplasias , Resistencia a Múltiples Medicamentos , Sitios de Unión , Adenosina Trifosfato , Antineoplásicos/farmacología
5.
Mol Divers ; 26(3): 1411-1423, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34247323

RESUMEN

The c-Met tyrosine kinase plays an important role in human cancers. Preclinical studies demonstrated that c-Met is over-expressed, mutated and amplified in a variety of human tumor types and design of more potent c-Met inhibitors is a priority. In this study, 14 molecular dynamics simulations of potent type II c-Met inhibitors were run to resolve the critical interactions responsible for high affinity of ligands towards c-Met considering the essential flexibility of protein-ligand interactions. Residues Phe1223 and Tyr1159, involved in pi-pi interactions were recognized as the most effective residues in the ligand binding in terms of binding free energies. Hydrogen bond interaction with Met1160 was also found necessary for effective type II ligand binding to c-Met.


Asunto(s)
Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA