Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Forensic Sci Res ; 9(1): owad055, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38567377

RESUMEN

Human age estimation from trace samples may give important leads early in a police investigation by contributing to the description of the perpetrator. Several molecular biomarkers are available for the estimation of chronological age, and currently, DNA methylation patterns are the most promising. In this study, a QIAGEN age protocol for age estimation was tested by five forensic genetic laboratories. The assay comprised bisulfite treatment of the extracted DNA, amplification of five CpG loci (in the genes of ELOVL2, C1orf132, TRIM59, KLF14, and FHL2), and sequencing of the amplicons using the PyroMark Q48 platform. Blood samples from 49 individuals with ages ranging from 18 to 64 years as well as negative and methylation controls were analyzed. An existing age estimation model was applied to display a mean absolute deviation of 3.62 years within the reference data set. Key points: Age determination as an intelligence tool during investigations can be a powerful tool in forensic genetics.In this study, five laboratories ran 49 samples and obtained a mean absolute deviation of 3.62 years.Five markers were analyzed on a PyroMark Q48 platform.

2.
Electrophoresis ; 45(9-10): 897-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38385810

RESUMEN

In the context of forensic casework, it is imperative to both establish a DNA profile from biological specimens and accurately identify the specific bodily fluid source. To achieve this, DNA methylation markers have been developed for the differentiation of blood, semen, vaginal epithelial secretions, and saliva samples. Saliva, alternatively referred to as oral fluid, is recognized for its heterogeneous cellular composition, characterized by a mixture of epithelial, leukocytic, and bacterial cells. Consequently, our research has revealed variations in methylation percentages that correlate with the method employed for collecting saliva samples. To investigate these concepts, we scrutinized four CpG markers situated within or in proximity to the BCAS4, SLC12A8, SOX2OT, and FAM43A genes. Subsequently, we designed primers based on bioinformatically transformed reference sequences for these markers and rigorously assessed their quality by examining dimer and hairpin formation, melting temperature, and specificity. These loci were identified as saliva markers based on either buccal swabs or spit collection. Yet, there has been minimal or no research conducted to explore the variations in methylation between different collection methods. For this study, buccal, lip, tongue, spit, and nasal swabs were collected from 20 individuals (N = 100). Mock forensic samples, which include chewing gum (N = 10) and cigarettes (N = 10), were also tested. DNA was extracted, bisulfite converted, then amplified using in-house designed assays, and pyrosequenced. The methylation levels were compared to other body fluids (semen, blood, vaginal epithelia, and menstrual blood [N = 32]). A total of 608 pyrosequencing results demonstrated that sampling location and collection method can greatly influence the level of methylation, highlighting the importance of examining multiple collection/deposition methods for body fluids when developing epigenetic markers.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Saliva , Manejo de Especímenes , Humanos , Saliva/química , Epigénesis Genética/genética , Manejo de Especímenes/métodos , Islas de CpG/genética , Femenino , Genética Forense/métodos , Masculino , Marcadores Genéticos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA