Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38323876

RESUMEN

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

2.
Environ Sci Technol ; 55(14): 10164-10174, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34213316

RESUMEN

Mass-independent fractionation (MIF) of stable even mass number mercury (Hg) isotopes is observed in rainfall and gaseous elemental Hg0 globally and is used to quantify atmospheric Hg deposition pathways. The chemical reaction and underlying even-Hg MIF mechanism are unknown however and speculated to be caused by Hg photo-oxidation on aerosols at the tropopause. Here, we investigate the Hg isotope composition of free tropospheric Hg0 and oxidized HgII forms at the high-altitude Pic du Midi Observatory. We find that gaseous oxidized Hg has positive Δ199Hg, Δ201Hg, and Δ200Hg and negative Δ204Hg signatures, similar to rainfall Hg, and we document rainfall Hg Δ196Hg to be near zero. Cloud water and rainfall Hg show an enhanced odd-Hg MIF of 0.3‰ compared to gaseous oxidized HgII, potentially indicating the occurrence of in-cloud aqueous HgII photoreduction. Diurnal MIF observations of free tropospheric Hg0 show how net Hg0 oxidation in high-altitude air masses leads to opposite even- and odd-MIF in Hg0 and oxidized HgII. We speculate that even-Hg MIF takes place by a molecular magnetic isotope effect during HgII photoreduction on aerosols that involves magnetic halogen nuclei. A Δ200Hg mass balance suggests that global Hg deposition pathways in models are likely biased toward HgII deposition. We propose that Hg cycling models could accommodate the Hg-isotope constraints on emission and deposition fluxes.


Asunto(s)
Mercurio , Fraccionamiento Químico , Monitoreo del Ambiente , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis , Oxidación-Reducción
3.
Environ Sci Technol ; 50(11): 5641-50, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27214126

RESUMEN

Understanding the sources and transformations of mercury (Hg) in the free troposphere is a critical aspect of global Hg research. Here we present one year of observations of atmospheric Hg speciation and gaseous elemental Hg (GEM) isotopic composition at the high-altitude Pic du Midi Observatory (2860 m above sea level) in France. Biweekly integrated GEM from February 2012 to January 2013 revealed significant variations in δ(202)HgGEM (-0.04‰ to 0.52‰) but not in Δ(199)HgGEM (-0.17‰ to -0.27‰) or Δ(200)HgGEM (-0.10‰ to 0.05‰). δ(202)HgGEM was negatively correlated with CO and reflected air mass origins from Europe (high CO, low δ(202)HgGEM) and from the Atlantic Ocean (low CO, high δ(202)HgGEM). We suggest that the δ(202)HgGEM variations represent mixing of recent low δ(202)HgGEM European anthropogenic emissions with high δ(202)HgGEM northern hemispheric background GEM. In addition, Atlantic Ocean free troposphere air masses showed a positive correlation between δ(202)HgGEM and gaseous oxidized Hg (GOM) concentrations, indicative of mass-dependent Hg isotope fractionation during GEM oxidation. On the basis of atmospheric δ(202)HgGEM and speciated Hg observations, we suggest that the oceanic free troposphere is a reservoir within which GEM is readily oxidized to GOM.


Asunto(s)
Isótopos , Mercurio , Fraccionamiento Químico , Monitoreo del Ambiente , Francia , Gases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...